Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
被引:15
|
作者:
Bizyaev, Ivan A.
论文数: 0引用数: 0
h-index: 0
机构:
Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, RussiaUdmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
Bizyaev, Ivan A.
[1
]
Borisov, Alexey V.
论文数: 0引用数: 0
h-index: 0
机构:
Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
Natl Res Nucl Univ MEPhI, Kashirskoe Sh 31, Moscow 115409, RussiaUdmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
Borisov, Alexey V.
[1
,2
]
Kilin, Alexander A.
论文数: 0引用数: 0
h-index: 0
机构:
Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, RussiaUdmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
Kilin, Alexander A.
[1
]
Mamaev, Ivan S.
论文数: 0引用数: 0
h-index: 0
机构:
Izhevsk State Tech Univ, Ul Studencheskaya 7, Izhevsk 426069, RussiaUdmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
Mamaev, Ivan S.
[3
]
机构:
[1] Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Natl Res Nucl Univ MEPhI, Kashirskoe Sh 31, Moscow 115409, Russia
[3] Izhevsk State Tech Univ, Ul Studencheskaya 7, Izhevsk 426069, Russia
This paper is concerned with two systems from sub-Riemannian geometry. One of them is defined by a Carnot group with three generatrices and growth vector (3, 6, 14), the other is defined by two generatrices and growth vector (2, 3, 5, 8). Using a Poincar, map, the nonintegrability of the above systems in the general case is shown. In addition, particular cases are presented in which there exist additional first integrals.
机构:
Scuola Int Super Studi Avanzati, SISSA, Via Bonomea 265, I-34136 Trieste, ItalyScuola Int Super Studi Avanzati, SISSA, Via Bonomea 265, I-34136 Trieste, Italy
Beschastnyi, Ivan
Medvedev, Alexandr
论文数: 0引用数: 0
h-index: 0
机构:
Scuola Int Super Studi Avanzati, SISSA, Via Bonomea 265, I-34136 Trieste, ItalyScuola Int Super Studi Avanzati, SISSA, Via Bonomea 265, I-34136 Trieste, Italy