Basic concepts for estimations of domains of attraction in time-delay systems

被引:0
|
作者
Scholl, Tessina H. [1 ]
Hagenmeyer, Veit [1 ]
Groell, Lutz [1 ]
机构
[1] Karlsruher Inst Technol KIT, Inst Automat & Angew Informat, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
domain of attraction; radius of attraction; time delay; Lyapunov-Krasovskii functional; Lyapunov-Razumikhin function; LaSalle's invariance principle; Hopf bifurcation; STABILITY;
D O I
10.1515/auto-2020-0034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With respect to equilibria of autonomous retarded functional differential equations, concepts for inner estimations of domains of attraction are derived. These are based on generalizations of Lyapunov's direct method and LaSalle's invariance principle. In delay-free ordinary differential equations, subsets of the domain of attraction can be described by sublevel sets of Lyapunov functions. In contrast, in time-delay systems it may be impossible to inscribe a non-empty sublevel set of a respective Lyapunov-Krasovskii functional into the monotonicity domain. The present paper presents admissible restrictions of the sublevel sets to solve this problem. In addition, numerical methods for upper bounds on the radius of attraction are described.
引用
收藏
页码:667 / 686
页数:20
相关论文
共 50 条
  • [31] Diagnosis Of Time-Delay Fractional Systems
    Atitallah, Halima
    Aribi, Asma
    Aoun, Mohamed
    2016 17TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA'2016), 2016, : 284 - +
  • [32] Lyapunov matrices for time-delay systems
    Kharitonov, V. L.
    Plischke, E.
    SYSTEMS & CONTROL LETTERS, 2006, 55 (09) : 697 - 706
  • [33] TIME-DELAY OF SIMPLE SCATTERING SYSTEMS
    MARTIN, PA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (03) : 221 - 227
  • [34] OBSERVER THEORY FOR SYSTEMS WITH TIME-DELAY
    HAMIDIHASHEMI, H
    LEONDES, CT
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1979, 10 (07) : 797 - 806
  • [35] STABILITY TESTING OF TIME-DELAY SYSTEMS
    GU, GX
    LEE, EB
    AUTOMATICA, 1989, 25 (05) : 777 - 780
  • [36] STABILITY OF TIME-DELAY SYSTEMS - COMMENTS
    SASAGAWA, T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (09) : 934 - 934
  • [37] Integrability for Nonlinear Time-Delay Systems
    Kaldmae, Arvo
    Califano, Claudia
    Moog, Claude H.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (07) : 1912 - 1917
  • [38] Zeros in Linear Time-Delay Systems
    Conte, Giuseppe
    Perdon, Anna Maria
    ADVANCES IN STATISTICAL CONTROL, ALGEBRAIC SYSTEMS THEORY, AND DYNAMIC SYSTEMS CHARACTERISTICS: A TRIBUTE TO MICHAEL K SAIN, 2008, : 159 - 169
  • [39] Attraction domains of delay systems: Construction by the Lyapunov function method
    Gorbunov, AV
    Kamenetskii, VA
    AUTOMATION AND REMOTE CONTROL, 2005, 66 (10) : 1569 - 1579
  • [40] MAXIMUM PRINCIPLE FOR SYSTEMS WITH TIME-DELAY
    LALWANI, CS
    DESAI, RC
    INTERNATIONAL JOURNAL OF CONTROL, 1973, 18 (02) : 301 - 304