Basic concepts for estimations of domains of attraction in time-delay systems

被引:0
作者
Scholl, Tessina H. [1 ]
Hagenmeyer, Veit [1 ]
Groell, Lutz [1 ]
机构
[1] Karlsruher Inst Technol KIT, Inst Automat & Angew Informat, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
domain of attraction; radius of attraction; time delay; Lyapunov-Krasovskii functional; Lyapunov-Razumikhin function; LaSalle's invariance principle; Hopf bifurcation; STABILITY;
D O I
10.1515/auto-2020-0034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With respect to equilibria of autonomous retarded functional differential equations, concepts for inner estimations of domains of attraction are derived. These are based on generalizations of Lyapunov's direct method and LaSalle's invariance principle. In delay-free ordinary differential equations, subsets of the domain of attraction can be described by sublevel sets of Lyapunov functions. In contrast, in time-delay systems it may be impossible to inscribe a non-empty sublevel set of a respective Lyapunov-Krasovskii functional into the monotonicity domain. The present paper presents admissible restrictions of the sublevel sets to solve this problem. In addition, numerical methods for upper bounds on the radius of attraction are described.
引用
收藏
页码:667 / 686
页数:20
相关论文
共 26 条
  • [1] Breda D, 2015, SPRBRIEF ELECT, P1, DOI 10.1007/978-1-4939-2107-2
  • [2] Briat C, 2015, ADV DELAY DYN, V3, P1, DOI 10.1007/978-3-662-44050-6
  • [3] Delay-dependent robust stability and L2-gain analysis of a class of nonlinear time-delay systems
    Coutinho, Daniel F.
    de Souza, Carlos E.
    [J]. AUTOMATICA, 2008, 44 (08) : 2006 - 2018
  • [4] Diekmann O., 1995, Applied Mathematical Sciences
  • [5] Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL
    Engelborghs, K
    Luzyanina, T
    Roose, D
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (01): : 1 - 21
  • [6] Fridman E., 2014, Systems & control: foundations & applications, Introduction to time-delay systems, DOI DOI 10.1007/978-3-319-09393-2
  • [7] Garcia-Lozano H., 2004, IFAC Proc., V37, P91, DOI DOI 10.1016/s1474-6670(17)30449-4
  • [8] Gu K., 2003, CONTROL ENGN SER BIR
  • [9] LIAPUNOV-RAZUMIKHIN FUNCTIONS AND AN INVARIANCE-PRINCIPLE FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS
    HADDOCK, JR
    TERJEKI, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 48 (01) : 95 - 122
  • [10] Hahn W., 1967, STABILITY MOTION