Particle filtering for state estimation in industrial robotic systems

被引:13
作者
Rigatos, G. G. [1 ]
机构
[1] Ind Syst Inst, Unit Ind Automat, Rion 26504, Greece
关键词
state estimation; industrial robotic manipulator; sensor fusion; Gaussian filters; non-parametric filters; extended Kalman filter; particle filter;
D O I
10.1243/09596518JSCE463
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State estimation is a major problem in industrial systems. To this end, Gaussian and non-parametric filters have been developed. In this paper the extended Kalman filter which assumes Gaussian measurement noise is compared to the particle filter which does not make any assumption on the measurement noise distribution. As a case study the estimation of the state vector of an industrial robot is used, when measurements are available from an accelerometer mounted on the end-effector of the robotic manipulator and from the encoders of the joint motors. It is shown that in this kind of sensor fusion problem the particle filter outperforms the extended Kalman filter, at the cost of more demanding computations.
引用
收藏
页码:437 / 455
页数:19
相关论文
共 40 条
[31]   Data fusion for visual tracking with particles [J].
Pérez, P ;
Vermaak, J ;
Blake, A .
PROCEEDINGS OF THE IEEE, 2004, 92 (03) :495-513
[32]   H∞ tracking of uncertain SISO nonlinear systems:: an observer-based adaptive fuzzy approach [J].
Rigatos, G. G. ;
Tzafestas, S. G. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2007, 38 (06) :459-472
[33]   Adaptive fuzzy control for the ship steering problem [J].
Rigatos, Gerasimos ;
Tzafestas, Spyros .
MECHATRONICS, 2006, 16 (08) :479-489
[34]   Mobile robot motion control in partially unknown environments using a sliding-mode fuzzy-logic controller [J].
Rigatos, GG ;
Tzafestas, CS ;
Tzafestas, SG .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2000, 33 (01) :1-11
[35]   Fuzzy stochastic automata for intelligent vehicle control [J].
Rigatos, GG .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50 (01) :76-79
[36]  
RIGATOS GG, 2007, MATH COMPUTER MODELL, V13
[37]  
Ristic B., 2004, Beyond the Kalman Filter: Particle Filters for Tracking Applications
[38]   Neural and neurofuzzy FELA adaptive robot control using feedforward and counterpropagation networks [J].
Tzafestas, SG ;
Rigatos, GG .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 1998, 23 (2-4) :291-330
[39]   LEARNING ALGORITHMS FOR NEURAL NETWORKS WITH THE KALMAN FILTERS [J].
WATANABE, K ;
TZAFESTAS, SG .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 1990, 3 (04) :305-319
[40]   Particle filter for sensor fusion in a land vehicle navigation system [J].
Yang, N ;
Tian, WF ;
Jin, ZH ;
Bin Zhang, C .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (03) :677-681