Resolution Sensitivity of a Compound Terrain Derivative as Computed from LiDAR-Based Elevation Data

被引:1
作者
Straumann, Ralph K. [1 ]
Purves, Ross S. [1 ]
机构
[1] Univ Zurich Irchel, Dept Geog, CH-8057 Zurich, Switzerland
来源
EUROPEAN INFORMATION SOCIETY: LEADING THE WAY WITH GEO-INFORMATION | 2007年
关键词
Terrain derivatives; Topographic Wetness Index; resolution sensitivity; LiDAR;
D O I
10.1007/978-3-540-72385-1_5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
New technologies such as Light Detection And Ranging (LiDAR) provide high resolution digital elevation data. These data offer new possibilities in the field of terrain modelling and analysis. However, not very much is known about the effects when these data are used to compute broadly applied terrain derivatives. In this paper the sensitivity of the Topographic Wetness Index (TWI) and its two constituting components gradient and Specific Catchment Area (SCA) regarding the resolution of LiDAR- based elevation data is examined. For coarser resolutions a shift in the TWI distribution to higher values is noted. TWI distributions at different resolutions differ significantly from each other. These findings have an impact on aspatial and spatial modelling based on the TWI.
引用
收藏
页码:87 / 109
页数:23
相关论文
共 50 条
[31]   UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment [J].
Trepekli, Katerina ;
Balstrom, Thomas ;
Friborg, Thomas ;
Fog, Bjarne ;
Allotey, Albert N. ;
Kofie, Richard Y. ;
Moller-Jensen, Lasse .
NATURAL HAZARDS, 2022, 113 (01) :423-451
[32]   Pathways of geomorphic evolution of sandstone escarpments in the Gory Stolowe tableland (SW Poland) - Insights from LiDAR-based high-resolution DEM [J].
Migon, Piotr ;
Kasprzak, Marek .
GEOMORPHOLOGY, 2016, 260 :51-63
[33]   GPU-based lightweight parallel processing toolset for LiDAR data for terrain analysis [J].
Li, Jing ;
Xu, You ;
Macrander, Hailey ;
Atkinson, Laura ;
Thomas, Tabris ;
Lopez, Mario A. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 117 :55-68
[34]   High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA [J].
William C. Haneberg ;
William F. Cole ;
Gyimah Kasali .
Bulletin of Engineering Geology and the Environment, 2009, 68 :263-276
[35]   Terrain Modeling From Lidar Range Data in Natural Landscapes: A Predictive and Bayesian Framework [J].
Bretar, Frederic ;
Chehata, Nesrine .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03) :1568-1578
[36]   High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA [J].
Haneberg, William C. ;
Cole, William F. ;
Kasali, Gyimah .
BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2009, 68 (02) :263-276
[37]   Deriving ground surface digital elevation models from LiDAR data with geostatistics [J].
Lloyd, CD ;
Atkinson, PM .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2006, 20 (05) :535-563
[38]   LiDAR-based digital terrain analysis of an area exposed to the risk of lava flow invasion: the Zafferana Etnea territory, Mt. Etna (Italy) [J].
Marina Bisson ;
Boris Behncke ;
Alessandro Fornaciai ;
Marco Neri .
Natural Hazards, 2009, 50 :321-334
[39]   LiDAR-based digital terrain analysis of an area exposed to the risk of lava flow invasion: the Zafferana Etnea territory, Mt. Etna (Italy) [J].
Bisson, Marina ;
Behncke, Boris ;
Fornaciai, Alessandro ;
Neri, Marco .
NATURAL HAZARDS, 2009, 50 (02) :321-334
[40]   Fast computation of digital terrain model anomalies based on LiDAR data for geoglyph detection in the Amazon [J].
Wagner, Fabien H. ;
Peripato, Vinicius ;
Kipnis, Renato ;
Werdesheim, Sara L. ;
Dalagnol, Ricardo ;
Aragao, Luiz E. O. C. ;
Hirye, Mayumi C. M. .
REMOTE SENSING LETTERS, 2022, 13 (09) :935-945