Resolution Sensitivity of a Compound Terrain Derivative as Computed from LiDAR-Based Elevation Data

被引:1
作者
Straumann, Ralph K. [1 ]
Purves, Ross S. [1 ]
机构
[1] Univ Zurich Irchel, Dept Geog, CH-8057 Zurich, Switzerland
来源
EUROPEAN INFORMATION SOCIETY: LEADING THE WAY WITH GEO-INFORMATION | 2007年
关键词
Terrain derivatives; Topographic Wetness Index; resolution sensitivity; LiDAR;
D O I
10.1007/978-3-540-72385-1_5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
New technologies such as Light Detection And Ranging (LiDAR) provide high resolution digital elevation data. These data offer new possibilities in the field of terrain modelling and analysis. However, not very much is known about the effects when these data are used to compute broadly applied terrain derivatives. In this paper the sensitivity of the Topographic Wetness Index (TWI) and its two constituting components gradient and Specific Catchment Area (SCA) regarding the resolution of LiDAR- based elevation data is examined. For coarser resolutions a shift in the TWI distribution to higher values is noted. TWI distributions at different resolutions differ significantly from each other. These findings have an impact on aspatial and spatial modelling based on the TWI.
引用
收藏
页码:87 / 109
页数:23
相关论文
共 50 条
[21]   Using LiDAR-Based DEM Elevation Difference Calculations to Estimate Net Streambank Erosion in an Iowa River, USA [J].
Wolter, Calvin F. ;
Schilling, Keith E. ;
Streeter, Matthew T. ;
Anderson, Elliot S. .
RIVER RESEARCH AND APPLICATIONS, 2025,
[22]   Classification of Multispectral High-Resolution Satellite Imagery Using LIDAR Elevation Data [J].
Alonso, Maria C. ;
Malpica, Jose A. .
ADVANCES IN VISUAL COMPUTING, PT II, PROCEEDINGS, 2008, 5359 :85-94
[23]   Revolutionizing RIS Networks: LiDAR-Based Data-Driven Approach to Enhance RIS Beamforming [J].
Nazar, Ahmad M. ;
Selim, Mohamed Y. ;
Qiao, Daji .
SENSORS, 2025, 25 (01)
[24]   Extracting terrain elevation information in front of the vehicle based on vehicle-mounted LiDAR in dynamic environments [J].
Xu, Peng ;
Liu, Shuang ;
Zhao, Dingxuan ;
Wu, Xiaoyang ;
Lin, Zhenjun ;
Zhang, Cong .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
[25]   BoostedDim attention: A novel data-driven approach to improving LiDAR-based lane detection [J].
Patil, Omkar ;
Nair, Binoy B. ;
Soni, Rajat ;
Thayyilravi, Arunkrishna ;
Manoj, C. R. .
AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (09)
[26]   TERRAIN AND CANOPY SURFACE MODELLING FROM LIDAR DATA FOR TREE SPECIES CLASSIFICATION [J].
Zhang, Zhenyu ;
Liu, Xiaoye ;
Peterson, Jim ;
Wright, Wendy .
GIS OSTRAVA 2012: SURFACE MODELS FOR GEOSCIENCES, 2012, :299-311
[27]   TERRAIN ROUGHNESS PARAMETERS FROM FULL-WAVEFORM AIRBORNE LIDAR DATA [J].
Hollaus, M. ;
Hoefle, B. .
100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 2, 2010, 38 :287-292
[28]   On evaluation of the digital terrain model generated from the LiDAR data of Lithuanian territory [J].
Slikas, Dominykas ;
Kalantaite, Ausra ;
Krikstaponis, Boleslovas ;
Parseliunas, Eimuntas Kazimieras ;
Birvydiene, Rosita .
9TH INTERNATIONAL CONFERENCE ENVIRONMENTAL ENGINEERING (9TH ICEE) - SELECTED PAPERS, 2014,
[29]   Detection of Agricultural Terraces Platforms Using Machine Learning from Orthophotos and LiDAR-Based Digital Terrain Model: A Case Study in Roya Valley of Southeast France [J].
Tubog, Michael Vincent ;
Emsellem, Karine ;
Bouissou, Stephane .
LAND, 2025, 14 (05)
[30]   Pedestrian Orientation Estimation based on Super Resolution of LiDAR Data [J].
Lee, Seokki ;
Gu, Yanlei ;
Goncharenko, Igor ;
Kamijo, Shunsuke .
2023 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, ICCE, 2023,