A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries

被引:304
作者
Qian, Yuhong [1 ]
Hu, Zhigang [1 ]
Ge, Xiaoming [2 ]
Yang, Shiliu
Peng, Yongwu [1 ]
Kang, Zixi [1 ]
Liu, Zhaolin [2 ]
Lee, Jim Yang [1 ]
Zhao, Dan [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
[2] ASTAR, Inst Mat Res & Engn, Innovis, 2 Fusionopolis Way, Singapore 138634, Singapore
关键词
OXYGEN REDUCTION REACTION; NITROGEN-DOPED CARBON; GRAPHENE-BASED CATALYSTS; NANOPOROUS CARBON; RECENT PROGRESS; ACTIVE-SITES; EVOLUTION; ALKALINE; BORON; NANOSTRUCTURES;
D O I
10.1016/j.carbon.2016.10.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable Zn-air batteries are under intensive studies because of their high-energy density, low cost, and safety. However, their wide application is prevented by several remaining technical issues, one of which is the lack of suitable bifunctional cathodic catalysts for oxygen reduction reaction (ORR) during discharging and oxygen evolution reaction (OER) during charging. Due to low material cost and wide distribution, carbon-based materials may serve as promising electrocatalysts, while doping heteroatoms such as nitrogen or boron can effectively enhance their catalytic activity. Herein, we pyrolyze a metal-organic framework containing Zn, N, and B as the precursor to synthesize dual-doped and metal-free porous carbon materials as efficient ORR/OER bifunctional electrocatalysts. The surface area of obtained carbon materials can be greatly enhanced by pyrolysis under H-2-containing atmosphere. In addition, N and B are evenly distributed within the carbon materials due to the crystalline MOF precursor. The resultant carbon materials exhibit high ORR and OER catalytic activities in both half-cell and single-cell battery measurements. Our study has demonstrated for the first time that MOFs can be used as precursors to synthesize metal-free ORR/OER bifunctional cathodic electrocatalysts with great potential in rechargeable Zn-air batteries. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:641 / 650
页数:10
相关论文
共 66 条
[1]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[2]   Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction [J].
Chen, Sheng ;
Duan, Jingjing ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
ADVANCED MATERIALS, 2014, 26 (18) :2925-2930
[3]   Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application [J].
Chen, Zhu ;
Yu, Aiping ;
Higgins, Drew ;
Li, Hui ;
Wang, Haijiang ;
Chen, Zhongwei .
NANO LETTERS, 2012, 12 (04) :1946-1952
[4]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[5]   Boron Doped Multi-walled Carbon Nanotubes as Catalysts for Oxygen Reduction Reaction and Oxygen Evolution Reactionin in Alkaline Media [J].
Cheng, Yuanhang ;
Tian, Yayuan ;
Fan, Xinzhuang ;
Liu, Jianguo ;
Yan, Chuanwei .
ELECTROCHIMICA ACTA, 2014, 143 :291-296
[6]   Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acidic media [J].
Choi, Chang Hyuck ;
Chung, Min Wook ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (06) :1802-1805
[7]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170
[8]   Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction [J].
Deng, Dehui ;
Yu, Liang ;
Chen, Xiaoqi ;
Wang, Guoxiong ;
Jin, Li ;
Pan, Xiulian ;
Deng, Jiao ;
Sun, Gongquan ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :371-375
[9]   M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions [J].
Fan, Xiujun ;
Peng, Zhiwei ;
Ye, Ruquan ;
Zhou, Haiqing ;
Guo, Xia .
ACS NANO, 2015, 9 (07) :7407-7418
[10]   Boosting Graphene Reactivity with Oxygen by Boron Doping: Density Functional Theory Modeling of the Reaction Path. [J].
Ferrighi, Lara ;
Datteo, Martina ;
Di Valentin, Cristiana .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (01) :223-230