Synthesis of polyvalent ion reaction of MoS2/CoS2-RGO anode materials for high-performance sodium-ion batteries and sodium-ion capacitors

被引:51
作者
Liu, Jian [1 ]
Xu, Ying-Ge [1 ]
Kong, Ling-Bin [1 ,2 ]
机构
[1] Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Sch Mat Sci & Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
MoS2/CoS2-RGO; Polyvalent ion; Sodium-ion capacitors (SICs); Sodium-ion batteries (SIBs); GRAPHENE OXIDE; ENERGY-STORAGE; CARBON; LITHIUM; NANOPARTICLES; FRAMEWORKS; ARRAYS; CONDUCTIVITY; CHALLENGES; ELECTRODES;
D O I
10.1016/j.jcis.2020.04.074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal sulfide is the most promising anode material for sodium storage devices due to its high theoretical capacity and low cost. However, the practical application of metal sulfide is largely hindered by huge capacity fading during the sodiation/desodiation process. Here mixed bimetallic sulfides grown on reduced graphene oxide (MoS2/CoS2-RGO) are prepared via a facile hydrothermal method. MoS2/CoS2-RGO displays a unique 2D structure which provides large specific surface area for pseudocapacitive charge storage, polyvalent ion reaction for ultrahigh capacity, and a heterostructure to high Na-ion diffusion rate. The optimized MoS2/CoS2-RGO shows a considerable reversible capacity of 593.6 mA h g(-1) at 100 mA g(-1) over 50 cycles and a high rate capability of 215.8 mA h g(-1) even at a high specific current of 5000 mA g(-1). A reaction kinetics and galvanostatic intermittent titration technique analysis indicates that MoS2/CoS2-RGO possesses fast pseudocapacitive charge storage and high Na-ion diffusion rate, benefiting the kinetics balance between anode and cathode. With this special structure, SICs containing the anode deliver a high specific energy of 152.98Wh kg(-1) at 562.5Wkg(-1). Similarly, the SIB exhibits a good capacities of 64 mA h g(-1) at the high rates of 5C over 100 cycles. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 62 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], [No title captured]
[4]   High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures [J].
Babu, Binson ;
Shaijumon, M. M. .
JOURNAL OF POWER SOURCES, 2017, 353 :85-94
[5]   Improving electrochemical performance of Na3(VPO4)2O2F cathode materials for sodium ion batteries by constructing conductive scaffold [J].
Bi, Linnan ;
Miao, Zhuang ;
Li, Xiaoyan ;
Song, Zhicui ;
Zheng, Qiaoji ;
Lin, Dunmin .
ELECTROCHIMICA ACTA, 2020, 337
[6]   FeS@tubular mesoporous carbon as high capacity and long cycle life anode materials for lithium- and sodium-ions batteries [J].
Cao, Zhijie ;
Ma, Xiaobo ;
Dong, Wenhao ;
Wang, Hailong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 786 :523-529
[7]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[8]   Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode [J].
Chen, Jingwei ;
Li, Shaohui ;
Kumar, Vipin ;
Lee, Pooi See .
ADVANCED ENERGY MATERIALS, 2017, 7 (19)
[9]   Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes [J].
Ding, Jia ;
Wang, Huanlei ;
Li, Zhi ;
Kohandehghan, Alireza ;
Cui, Kai ;
Xu, Zhanwei ;
Zahiri, Beniamin ;
Tan, Xuehai ;
Lotfabad, Elmira Memarzadeh ;
Olsen, Brian C. ;
Mitlin, David .
ACS NANO, 2013, 7 (12) :11004-11015
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935