Crystallographic characterization of Al18Mg3Ti2 intermetallic phase in Al-Zn-Mg-Cu-Zr-Ti alloy

被引:22
作者
Lee, Sang-Hwa [1 ,2 ]
Kayani, Saif Haider [1 ,3 ]
Jung, Jae-Gil [1 ]
Baik, Sung-Il [4 ]
Kim, Min-Seok [1 ]
Lee, Young-Kook [2 ]
Euh, Kwangjun [1 ,3 ]
机构
[1] Korea Inst Mat Sci, Metall Mat Div, Chang Won 51508, South Korea
[2] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
[3] Korea Univ Sci & Technol UST, Adv Mat Engn, Daejeon 34113, South Korea
[4] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
Metals and alloys; Precipitation; Crystal growth; Transmission electron microscopy; TEM; TENSILE PROPERTIES; ALUMINUM-ALLOY; MICROSTRUCTURE; BEHAVIOR; HARDNESS;
D O I
10.1016/j.jallcom.2020.156173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We studied the crystallographic characteristics of the Al18Mg3Ti2 intermetallic phase in a solutiontreated Al-7.6Zn-2.6Mg-2.0Cu-0.1Zr-0.07Ti (wt.%) alloy utilizing transmission electron microscopy (TEM). Cubic spinel Al18Mg3Ti2 intermetallic phase features {111) faceted interfaces with the Al matrix. Selected-area electron diffraction pattern, stereographic projection, and atomic projection studies indicated four possible orientation relationships between the Al18Mg3Ti2 phase and the Al matrix, which are categorized by a misorientation angle (theta) at {111) planes of each phase (i.e., theta = +/- m, 70.5 degrees +/- m, where m = 12-14 degrees). High resolution TEM analyses confirmed that the growth of the Al18Mg3Ti2 intermetallic phase is based on the ledge mechanism on the {111) interfaces along with multiple {111) twinning. This growth mechanism of the Al18Mg3Ti2 phase contributes to the formation of faceted morphologies with {111) interfaces. The interface between the Al18Mg3Ti2 phase and Al matrix provides a heterogeneous nucleation site for the L1(2)-precipitate and a Zn-rich phase. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 31 条
[1]  
[Anonymous], 2010, MATER DESIGN, DOI DOI 10.1016/J.MATDES.2010.04.006
[2]  
[Anonymous], 2005, METALL MATER TRANS A
[3]  
[Anonymous], 2019, INT J FATIGUE, DOI DOI 10.1016/J.IJFATIGUE.2019.02.023
[4]  
[Anonymous], 2010, MATER DESIGN, DOI DOI 10.1016/J.MATDES.2009.06.031
[5]  
[Anonymous], 2007, INTERMETALLICS, DOI DOI 10.1016/J.INTERMET.2006.03.003
[6]  
[Anonymous], 1995, J SOLID STATE CHEM
[7]  
[Anonymous], 2013, INTERMETALLICS, DOI DOI 10.1016/J.INTERMET.2013.04.003
[8]  
[Anonymous], 2014, J ALLOY COMPD, DOI DOI 10.1016/J.JALLCOM.2014.05.061
[9]  
[Anonymous], 2010, MAT SCI ENG A STRUCT, DOI DOI 10.1016/J.MSEA.2010.05.009
[10]  
[Anonymous], 2008, ACTA MATER, DOI DOI 10.1016/J.ACTAMAT.2007.11.011