Duality and distance formulas in Lipschitz-Holder spaces

被引:5
作者
Angrisani, Francesca [1 ]
Ascione, Giacomo [1 ]
D'Onofrio, Luigi [2 ]
Manzo, Gianluigi [1 ]
机构
[1] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Univ Napoli Parthenope, Dipartimento Sci & Tecnol, Ctr Direz Isola C4, I-80100 Naples, Italy
关键词
Duality; bi-duality; Lipschitz spaces; compact metric spaces; distance; BESOV;
D O I
10.4171/RLM/897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a compact metric space (K, rho), the predual of Lip(K, rho) can be identified with the normed space M(K) of finite (signed) Borel measures on K equipped with the Kantorovich-Rubinstein norm, this is due to Kantorovich [20]. Here we deduce atomic decomposition of M(K) by mean of some results from [10]. It is also known, under suitable assumption, that there is a natural isometric isomorphism between Lip(K, rho) and (lip(K, rho))** [15]. In this work we also show that the pair (lip(K, rho), Lip(K, rho)) can be framed in the theory of o-O type structures introduced by K. M. Perfekt.
引用
收藏
页码:401 / 419
页数:19
相关论文
共 26 条
  • [1] Ambrosio L, 2013, CRM PROC & LECT NOTE, V56, P1
  • [2] Angrisani F., 2019, RIC MAT, P1
  • [3] [Anonymous], 2004, Oxford Lecture Ser. Math. Appl.
  • [4] [Anonymous], 1961, Studia Math.
  • [5] BADE WG, 1987, P LOND MATH SOC, V55, P359
  • [6] Berninger H., 2003, EXTRACTA MATH, V18, P33
  • [7] A new function space and applications
    Bourgain, Jean
    Brezis, Haim
    Mironescu, Petru
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (09) : 2083 - 2101
  • [8] Brezis H., 2010, FUNCTIONAL ANAL SOBO
  • [9] Coifman R.R., 2006, ANAL HARMONIQUE NONC, V242
  • [10] Atomic decompositions, two stars theorems, and distances for the Bourgain-Brezis-Mironescu space and other big spaces
    D'Onofrio, Luigi
    Greco, Luigi
    Perfekt, Karl-Mikael
    Sbordone, Carlo
    Schiattarella, Roberta
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (03): : 653 - 661