Nickel, Manganese, and Cobalt Dissolution from Ni-Rich NMC and Their Effects on NMC622-Graphite Cell

被引:307
作者
Jung, Roland [1 ,2 ,3 ]
Linsenmann, Fabian [1 ,2 ]
Thomas, Rowena [4 ]
Wandt, Johannes [1 ,2 ]
Solchenbach, Sophie [1 ,2 ]
Maglia, Filippo [3 ]
Stinner, Christoph [3 ]
Tromp, Moniek [5 ]
Gasteiger, Hubert A. [1 ,2 ]
机构
[1] Tech Univ Munich, Dept Chem, Chair Tech Electrochem, Garching, Germany
[2] Tech Univ Munich, Catalysis Res Ctr, Garching, Germany
[3] BMW Grp, Munich, Germany
[4] Tech Univ Munich, Inst Catalyst Characterizat, Garching, Germany
[5] Univ Amsterdam, Vant Hoff Inst Mol Sci, Amsterdam, Netherlands
关键词
TRANSITION-METAL DISSOLUTION; LITHIUM-ION BATTERIES; SOLID-STATE CHEMISTRY; CATHODE MATERIALS; 1ST-CYCLE IRREVERSIBILITY; NEGATIVE ELECTRODE; POSITIVE ELECTRODE; SPINEL ELECTRODES; OXIDATION-STATE; GRAPHITE ANODE;
D O I
10.1149/2.1151902jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Transition metal dissolution from the cathode active material and its deposition on the anode causes significant cell aging, studied most intensively for manganese. Owing to their higher specific energy, the current focus is shifting towards nickel-rich layered LiNixMnyCozO2 (NMC, x + y + z = 1) with x > 0.5, so that the effect of Ni dissolution on cell degradation needs to be understood. This study investigates the dissolution of transition metals from a NMC622 cathode and their subsequent deposition on a graphite anode using operando X-ray absorption spectroscopy. We show that in NMC622-graphite cells transition metals dissolve nearly stoichiometrically at potentials > 4.6 V, highlighting the significance of investigating Ni dissolution/deposition. Using NMC622-graphite full-cells with electrolyte containing the bis(trifluoromethane) sulfonimide (TFSI) salts of either Ni, Mn, or Co, we compare the detrimental impact of these metals on cell performance. Using in-situ and ex-situ XRD, we show that the aging mechanism induced by all three metals is the loss of cycleable lithium in the solid electrolyte interface (SEI) of the graphite. This loss is larger in magnitude when Mn is present in the electrolyte compared to Ni and Co, which we ascribe to a higher activity of deposited Mn towards SEI decomposition in comparison to Ni and Co. (C) The Author(s) 2019. Published by ECS.
引用
收藏
页码:A378 / A389
页数:12
相关论文
共 71 条
[1]   Future generations of cathode materials: an automotive industry perspective [J].
Andre, Dave ;
Kim, Sung-Jin ;
Lamp, Peter ;
Lux, Simon Franz ;
Maglia, Filippo ;
Paschos, Odysseas ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6709-6732
[2]   Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques [J].
Aurbach, D ;
Levi, MD ;
Gamulski, K ;
Markovsky, B ;
Salitra, G ;
Levi, E ;
Heider, U ;
Heider, L ;
Oesten, R .
JOURNAL OF POWER SOURCES, 1999, 81 :472-479
[3]   On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions [J].
Banerjee, Anjan ;
Shilina, Yuliya ;
Ziv, Baruch ;
Ziegelbauer, Joseph M. ;
Luski, Shalom ;
Aurbach, Doron ;
Halalay, Ion C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (05) :1738-1741
[4]   A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries [J].
Bar-Tow, D ;
Peled, E ;
Burstein, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :824-832
[5]   Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry [J].
Bernhard, Rebecca ;
Metzger, Michael ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) :A1984-A1989
[6]  
Buchberger I., 2016, THESIS
[7]   Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance [J].
Buchberger, Irmgard ;
Seidlmayer, Stefan ;
Pokharel, Aneil ;
Piana, Michele ;
Hattendorff, Johannes ;
Kudejova, Petra ;
Gilles, Ralph ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2737-A2746
[8]  
Cho J, 1999, J ELECTROCHEM SOC, V146, P3577, DOI 10.1149/1.1392517
[9]   Comparison of metal ion dissolutions from lithium ion battery cathodes [J].
Choi, W. ;
Manthiram, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) :A1760-A1764
[10]   Cyclable lithium and capacity loss in Li-ion cells [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A818-A829