Convolution Quadrature for Wave Simulations

被引:13
作者
Hassell, Matthew [1 ]
Sayas, Francisco-Javier [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
来源
NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING | 2016年 / 9卷
关键词
Convolution Quadrature; Acoustic waves; Time domain boundary integral equations; Overresolving in the Laplace domain for Convolution Quadrature; methods; BOUNDARY INTEGRAL-EQUATIONS; DISCRETIZED OPERATIONAL CALCULUS; TIME DISCRETIZATION; MULTISTEP;
D O I
10.1007/978-3-319-32146-2_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes develop the algorithmic aspects of convolution equations and their discretization by Convolution Quadrature, with an emphasis on the convolution equations that occur in the boundary integral equation formulation of wave scattering problems. The authors explore the development of CQ from a number of different perspectives. Clear algorithms for implementation of CQ are presented. A final example brings together the entire course to demonstrate the full discretization of a time domain boundary integral equation using Convolution Quadrature in time and a simple to program Nystrom flavored method in space.
引用
收藏
页码:71 / 159
页数:89
相关论文
共 50 条
  • [41] CORRECTION OF HIGH-ORDER BDF CONVOLUTION QUADRATURE FOR FRACTIONAL EVOLUTION EQUATIONS
    Jin, Bangti
    Li, Buyang
    Zhou, Zhi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06) : A3129 - A3152
  • [42] DISCRETIZATION OF THE TIME DOMAIN CFIE FOR ACOUSTIC SCATTERING PROBLEMS USING CONVOLUTION QUADRATURE
    Chen, Qiang
    Monk, Peter
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3107 - 3130
  • [43] Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems
    Egger, H.
    Schmidt, K.
    Shashkov, V
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387
  • [44] Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature
    Khosravi, Mohammadkeya
    Jani, Mostafa
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2018, 9 (01): : 117 - 127
  • [45] Convergence of Runge-Kutta-based convolution quadrature for semilinear fractional differential equations
    Zhao, Jingjun
    Kong, Jiameng
    Xu, Yang
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (11) : 1326 - 1340
  • [46] Sparsity of Runge–Kutta convolution weights for the three-dimensional wave equation
    Lehel Banjai
    Maryna Kachanovska
    BIT Numerical Mathematics, 2014, 54 : 901 - 936
  • [47] Convolution quadrature methods for time-domain scattering from unbounded penetrable interfaces
    Labarca, Ignacio
    Faria, Luiz M.
    Perez-Arancibia, Carlos
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2227):
  • [48] A Single-Step Correction Scheme of Crank–Nicolson Convolution Quadrature for the Subdiffusion Equation
    Jilu Wang
    Jungang Wang
    Lihong Yin
    Journal of Scientific Computing, 2021, 87
  • [49] Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation
    Chen, Q.
    Monk, P.
    Wang, X.
    Weile, D.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 11 (02) : 383 - 399
  • [50] Convolution quadrature for Hadamard fractional calculus and correction methods for the subdiffusion with singular source terms
    Yin, Baoli
    Zhang, Guoyu
    Liu, Yang
    Li, Hong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 138