Convolution Quadrature for Wave Simulations

被引:13
作者
Hassell, Matthew [1 ]
Sayas, Francisco-Javier [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
来源
NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING | 2016年 / 9卷
关键词
Convolution Quadrature; Acoustic waves; Time domain boundary integral equations; Overresolving in the Laplace domain for Convolution Quadrature; methods; BOUNDARY INTEGRAL-EQUATIONS; DISCRETIZED OPERATIONAL CALCULUS; TIME DISCRETIZATION; MULTISTEP;
D O I
10.1007/978-3-319-32146-2_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes develop the algorithmic aspects of convolution equations and their discretization by Convolution Quadrature, with an emphasis on the convolution equations that occur in the boundary integral equation formulation of wave scattering problems. The authors explore the development of CQ from a number of different perspectives. Clear algorithms for implementation of CQ are presented. A final example brings together the entire course to demonstrate the full discretization of a time domain boundary integral equation using Convolution Quadrature in time and a simple to program Nystrom flavored method in space.
引用
收藏
页码:71 / 159
页数:89
相关论文
共 50 条
  • [31] The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus
    Yang Liu
    Baoli Yin
    Hong Li
    Zhimin Zhang
    Journal of Scientific Computing, 2021, 89
  • [32] On a Reformulated Convolution Quadrature Based Boundary Element Method
    Schanz, M.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 109 - 129
  • [33] APPROXIMATION METHODS FOR THE DISTRIBUTED ORDER CALCULUS USING THE CONVOLUTION QUADRATURE
    Yin, Baoli
    Liu, Yang
    Li, Hong
    Zhang, Zhimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1447 - 1468
  • [34] Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge-Kutta convolution quadrature
    Ballani, J.
    Banjai, L.
    Sauter, S.
    Veit, A.
    NUMERISCHE MATHEMATIK, 2013, 123 (04) : 643 - 670
  • [35] Generalized convolution quadrature with variable time stepping. Part II: Algorithm and numerical results
    Lopez-Fernandez, Maria
    Sauter, Stefan
    APPLIED NUMERICAL MATHEMATICS, 2015, 94 : 88 - 105
  • [36] Acoustic Scattering Problems with Convolution Quadrature and the Method of Fundamental Solutions
    Labarca, Ignacio
    Hiptmair, Ralf
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (04) : 985 - 1008
  • [37] On the Convolution Quadrature Rule for Integral Transforms with Oscillatory Bessel Kernels
    Ma, Junjie
    Liu, Huilan
    SYMMETRY-BASEL, 2018, 10 (07):
  • [38] Fast algorithms for convolution quadrature of Riemann-Liouville fractional derivative
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 384 - 410
  • [39] EXPONENTIAL CONVOLUTION QUADRATURE FOR NONLINEAR SUBDIFFUSION EQUATIONS WITH NONSMOOTH INITIAL DATA
    L, B. U. Y. A. N. G., I
    MA, S. H. U.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 503 - 528
  • [40] Time-dependent dynamical energy analysis via convolution quadrature
    Chappell, David J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 515