Convolution Quadrature for Wave Simulations

被引:13
作者
Hassell, Matthew [1 ]
Sayas, Francisco-Javier [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
来源
NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING | 2016年 / 9卷
关键词
Convolution Quadrature; Acoustic waves; Time domain boundary integral equations; Overresolving in the Laplace domain for Convolution Quadrature; methods; BOUNDARY INTEGRAL-EQUATIONS; DISCRETIZED OPERATIONAL CALCULUS; TIME DISCRETIZATION; MULTISTEP;
D O I
10.1007/978-3-319-32146-2_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes develop the algorithmic aspects of convolution equations and their discretization by Convolution Quadrature, with an emphasis on the convolution equations that occur in the boundary integral equation formulation of wave scattering problems. The authors explore the development of CQ from a number of different perspectives. Clear algorithms for implementation of CQ are presented. A final example brings together the entire course to demonstrate the full discretization of a time domain boundary integral equation using Convolution Quadrature in time and a simple to program Nystrom flavored method in space.
引用
收藏
页码:71 / 159
页数:89
相关论文
共 50 条
  • [21] Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves
    Laliena, Antonio R.
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2009, 112 (04) : 637 - 678
  • [22] Convolution Quadrature Methods for Time-Space Fractional Nonlinear Diffusion-Wave Equations
    Huang, Jianfei
    Arshad, Sadia
    Jiao, Yandong
    Tang, Yifa
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) : 538 - 557
  • [23] Fractional Variational Integrators Based on Convolution Quadrature
    Belgacem, Khaled Hariz
    Jimenez, Fernando
    Ober-Bloebaum, Sina
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [24] A convolution quadrature using derivatives and its application
    Hao Ren
    Junjie Ma
    Huilan Liu
    BIT Numerical Mathematics, 2024, 64
  • [25] A convolution quadrature using derivatives and its application
    Ren, Hao
    Ma, Junjie
    Liu, Huilan
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [26] On hybrid convolution quadrature approaches for modeling time-domain wave problems with broadband frequency content
    Rowbottom, Jacob
    Chappell, David J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (24) : 7581 - 7608
  • [27] An error analysis of Runge–Kutta convolution quadrature
    Lehel Banjai
    Christian Lubich
    BIT Numerical Mathematics, 2011, 51 : 483 - 496
  • [28] Wavelets and convolution quadrature for the efficient solution of a 2D space-time BIE for the wave equation
    Bertoluzza, S.
    Falletta, S.
    Scuderi, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 366
  • [29] Generalized convolution quadrature for non smooth sectorial problems
    Guo, J.
    Lopez-Fernandez, M.
    CALCOLO, 2025, 62 (01)
  • [30] The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus
    Liu, Yang
    Yin, Baoli
    Li, Hong
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)