Thermodynamics, geometrothermodynamics and critical behavior of (2+1)-dimensional black holes

被引:34
作者
Han, YiWen [1 ]
Chen, Gang [1 ]
机构
[1] Chongqing Technol & Business Univ, Coll Comp Sci, Chongqing 400067, Peoples R China
关键词
Black hole; Legendre invariance; Curvature scalar; Phase transition; GEOMETRY; GRAVITY;
D O I
10.1016/j.physletb.2012.06.068
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this Letter, we study the properties of the (2 + 1)-dimensional black holes from the viewpoint of geometrothermodynamics. We show that the Legendre invariant metric of the (2 + 1)-dimensional black holes can produce correctly the behavior of the thermodynamic interaction and phase transition structure of the corresponding black hole configurations. We find that they are both curved and the curvature scalar gives the information about the phase transition point. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 130
页数:4
相关论文
共 34 条
[1]   STABILITY OF GRAVITY WITH A COSMOLOGICAL CONSTANT [J].
ABBOTT, LF ;
DESER, S .
NUCLEAR PHYSICS B, 1982, 195 (01) :76-96
[2]   Thermodynamic geometry of charged rotating BTZ black holes [J].
Akbar, M. ;
Quevedo, H. ;
Saifullah, K. ;
Sanchez, A. ;
Taj, S. .
PHYSICAL REVIEW D, 2011, 83 (08)
[3]   Unified geometric description of black hole thermodynamics [J].
Alvarez, Jose L. ;
Quevedo, Hernando ;
Sanchez, Alberto .
PHYSICAL REVIEW D, 2008, 77 (08)
[4]   Flat information geometries in black hole thermodynamics [J].
Aman, Jan E. ;
Bengtsson, Ingemar ;
Pidokrajt, Narit .
GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (08) :1305-1315
[5]   Geometry of higher-dimensional black hole thermodynamics -: art. no. 024017 [J].
Åman, JE ;
Pidokrajt, N .
PHYSICAL REVIEW D, 2006, 73 (02)
[6]   Geometry of black hole thermodynamics [J].
Åman, JE ;
Bengtsson, I ;
Pidokrajt, N .
GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (10) :1733-1743
[7]   Asymptotically anti-de Sitter spacetimes: conserved quantities [J].
Ashtekar, A ;
Das, S .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (02) :L17-L30
[8]  
Astefanesei D, 2004, J HIGH ENERGY PHYS
[9]   A stress tensor for anti-de Sitter gravity [J].
Balasubramanian, V ;
Kraus, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (02) :413-428
[10]   QUASI-LOCAL ENERGY AND CONSERVED CHARGES DERIVED FROM THE GRAVITATIONAL ACTION [J].
BROWN, JD ;
YORK, JW .
PHYSICAL REVIEW D, 1993, 47 (04) :1407-1419