Investigation on Incremental Sheet Forming combined with Laser Heating and Stretch Forming for the production of lightweight structures

被引:16
作者
Araghi, Babak Taleb [1 ]
Goettmann, Alexander [1 ]
Bergweiler, Georg [2 ]
Saeed-Akbari, Alireza
Bueltmann, Jan [3 ]
Zettler, Joachim [4 ]
Bambach, Markus [1 ]
Hirt, Gerhard [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Met Forming, Intzestr 10, D-52056 Aachen, Germany
[2] Fraunhofer Inst Laser Tech, D-52074 Aachen, Germany
[3] Dept Ferrous Met, D-52072 Aachen, Germany
[4] EADS Innovat Works, D-81663 Munich, Germany
来源
SHEET METAL 2011 | 2011年 / 473卷
关键词
Sheet metal forming; Incremental Sheet Forming; Integrative Production;
D O I
10.4028/www.scientific.net/KEM.473.919
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Asymmetric Incremental Sheet Forming (AISF) is a process for the flexible production of sheet metal parts. In AISF, a part is obtained as the sum of localized plastic deformations produced by a simple forming tool that, in most configurations, moves under CNC control. Flexible processes with low tooling effort like AISF are suitable for sectors with small lot sizes but premium products, e.g. for the aviation and the automotive sector. Four main process limits restrict the range of application of AISF and its take-up in industry. These are: (i) material thinning, (ii) limited geometrical accuracy, (iii) the process duration and (iv) the calculation time and accuracy of process modelling. Moreover, the material spectrum of AISF for structural parts is mostly restricted to cold workable materials like steel and aluminum. This paper presents some new investigations of incremental sheet forming combined with laser heating or stretch forming as possible hybrid approaches to overcome the above mentioned limitations of AISF. These hybrid incremental sheet forming processes can increase the technological and economical potentials of AISF. A possible application is the fabrication of lightweight sheet metal parts as individual parts or small batches, e.g. for the aerospace industry. The present study provides a short overview of the state of the art of AISF, introduces the new hybrid process variations of AISF and compares the capabilities of the hybrid processes and the standard AISF process. Finally, two examples for applications are presented: (i) the production of a part used in an airplane for which the manufacturing steps consist of die manufacture, sheet metal forming by means of stretch forming combined with AISF and a final trimming operation using a single hybrid machine set-up; (ii) laser-assisted AISF for magnesium alloys.
引用
收藏
页码:919 / +
页数:3
相关论文
共 14 条
[1]  
Al-Samman T., 2008, Magnesium - The Role of Crystallographic Texture, Deformation Conditions and Alloying Elements on Formability
[2]   A structured search for applications of the incremental sheet-forming process by product segmentation [J].
Allwood, JM ;
King, GPF ;
Duflou, J .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2005, 219 (02) :239-244
[3]  
[Anonymous], 2013, Physical Foundations of Materials Science, DOI DOI 10.1007/978-3-662-09291-0
[4]   Investigation into a new hybrid forming process: Incremental sheet forming combined with stretch forming [J].
Araghi, B. Taleb ;
Manco, G. L. ;
Bambach, M. ;
Hirt, G. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2009, 58 (01) :225-228
[5]  
Araghi BT, 2009, KEY ENG MATER, V410-411, P355, DOI 10.4028/www.scientific.net/KEM.410-411.355
[6]  
Bambach M., 2008, UMFORMTECHNISCHE SCH, V139
[7]   Improved SPIF performance through dynamic local heating [J].
Duflou, J. R. ;
Callebaut, B. ;
Verbert, J. ;
De Baerdemaeker, H. .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2008, 48 (05) :543-549
[8]   Laser assisted incremental forming: Formability and accuracy improvement [J].
Duflou, J. R. ;
Callebaut, B. ;
Verbert, J. ;
De Baerdemaeker, H. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2007, 56 (01) :273-276
[9]  
Hirt G, 2001, P MAT WEEK MUNCH
[10]   DYNAMIC RECRYSTALLIZATION AND THE DEVELOPMENT OF MICROSTRUCTURE DURING THE HIGH-TEMPERATURE DEFORMATION OF MAGNESIUM [J].
ION, SE ;
HUMPHREYS, FJ ;
WHITE, SH .
ACTA METALLURGICA, 1982, 30 (10) :1909-1919