From simple-minded collections to silting objects via Koszul duality

被引:5
作者
Su, Hao [1 ]
Yang, Dong [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Silting object; Simple-minded collection; Non-positive dg algebra; Positive A(infinity)-algebra;
D O I
10.1007/s10468-018-9763-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an elementary simple-minded collection in the derived category of a non-positive dg algebra with finite-dimensional total cohomology, we construct a silting object via Koszul duality.
引用
收藏
页码:219 / 238
页数:20
相关论文
共 20 条
  • [1] Adachi T., ARXIV170808168V1
  • [2] Silting mutation in triangulated categories
    Aihara, Takuma
    Iyama, Osamu
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 633 - 668
  • [3] Simple objects in the heart of a t-structure
    Al-Nofayee, Salah
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (01) : 54 - 59
  • [4] Koszul duality patterns in representation theory
    Beilinson, A
    Ginzburg, V
    Soergel, W
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) : 473 - 527
  • [5] Brustle T., 2013, EMS SER C REP, P135
  • [6] Homotopy Categories, Leavitt Path Algebras, and Gorenstein Projective Modules
    Chen, Xiao-Wu
    Yang, Dong
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (10) : 2597 - 2633
  • [7] Relative singularity categories I: Auslander resolutions
    Kalck, Martin
    Yang, Dong
    [J]. ADVANCES IN MATHEMATICS, 2016, 301 : 973 - 1021
  • [8] KELLER B, 1994, ANN SCI ECOLE NORM S, V27, P63
  • [9] Keller B., 2006, INT C MATH, VII
  • [10] Keller B., 2001, HOMOL HOMOTOPY APPL, V3, P1