Intelligent Predictor of Energy Expenditure with the Use of Patch-Type Sensor Module

被引:5
作者
Li, Meina [1 ]
Kwak, Keun-Chang [2 ]
Kim, Youn-Tae [1 ]
机构
[1] Chosun Univ, Dept IT Fus Technol, Grad Sch, Kwangju 501759, South Korea
[2] Chosun Univ, Dept Control Instrumentat & Robot Engn, Kwangju 501759, South Korea
基金
新加坡国家研究基金会;
关键词
intelligent predictor; energy expenditure; patch-type sensor module; heart rate; movement index; linguistic model; HEART-RATE; ACCELEROMETER; VARIABILITY; SYSTEM; HEALTH;
D O I
10.3390/s121114382
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper is concerned with an intelligent predictor of energy expenditure (EE) using a developed patch-type sensor module for wireless monitoring of heart rate (HR) and movement index (MI). For this purpose, an intelligent predictor is designed by an advanced linguistic model (LM) with interval prediction based on fuzzy granulation that can be realized by context-based fuzzy c-means (CFCM) clustering. The system components consist of a sensor board, the rubber case, and the communication module with built-in analysis algorithm. This sensor is patched onto the user's chest to obtain physiological data in indoor and outdoor environments. The prediction performance was demonstrated by root mean square error (RMSE). The prediction performance was obtained as the number of contexts and clusters increased from 2 to 6, respectively. Thirty participants were recruited from Chosun University to take part in this study. The data sets were recorded during normal walking, brisk walking, slow running, and jogging in an outdoor environment and treadmill running in an indoor environment, respectively. We randomly divided the data set into training (60%) and test data set (40%) in the normalized space during 10 iterations. The training data set is used for model construction, while the test set is used for model validation. The experimental results revealed that the prediction error on treadmill running simulation was improved by about 51% and 12% in comparison to conventional LM for training and checking data set, respectively.
引用
收藏
页码:14382 / 14396
页数:15
相关论文
共 24 条
  • [21] Xiao F, 2009, IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, P355
  • [22] Xiao F, 2009, LECT NOTES COMPUT SC, V5553, P1089
  • [23] Wireless Sensor Network Based E-Health System - Implementation and Experimental Results
    Yan, Hairong
    Huo, Hongwei
    Xu, Youzhi
    Gidlund, Mikael
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2010, 56 (04) : 2288 - 2295
  • [24] Heart Rate Prediction Based on Physical Activity using Feedforward Neural Network
    Yuchi, Ming
    Jo, Jun
    [J]. ICHIT 2008: INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, PROCEEDINGS, 2008, : 344 - 350