PRESERVATION OF DEPTH IN THE LOCAL GEOMETRIC LANGLANDS CORRESPONDENCE

被引:8
作者
Chen, Tsao-Hsien [1 ]
Kamgarpour, Masoud [2 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Local geometric Langlands; Moy-Prasad Theory; slope of connections; opers; affine vertex algebras; Segal-Sugwara operators; LIE GROUP; REPRESENTATIONS; ALGEBRAS; MODULES;
D O I
10.1090/tran/6794
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is expected that, under mild conditions, the local Langlands correspondence preserves depths of representations. In this article, we formulate a conjectural geometrisation of this expectation. We prove half of this conjecture by showing that the depth of a categorical representation of the loop group is greater than or equal to the depth of its underlying geometric Langlands parameter. A key ingredient of our proof is a new definition of the slope of a meromorphic connection, a definition which uses opers.
引用
收藏
页码:1345 / 1364
页数:20
相关论文
共 38 条
  • [11] Deligne P., 1970, Lecture Notes in Mathematics, V163, DOI 10.1007/BFb0061194
  • [12] Drinfeld V.G., 1984, Itogi Nauki i Tekhniki, V24, P81
  • [13] Frenkel E., 2007, Cambridge Stud. Adv. Math., V103
  • [14] Frenkel E, 2006, PROG MATH, V253, P69
  • [15] Frenkel E, 2009, ADV STU P M, V54, P167
  • [16] Frenkel E, 2010, MATH RES LETT, V17, P27
  • [17] A rigid irregular connection on the projective line
    Frenkel, Edward
    Gross, Benedict
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (03) : 1469 - 1512
  • [18] Localization of g-modules on the affine Grassmannian
    Frenkel, Edward
    Gaitsgory, Dennis
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (03) : 1339 - 1381
  • [19] Frenkel Edward, 2004, MATH SURVEYS MONOGRA, V88
  • [20] Kamgarpour M, 2016, T AM MATH SOC, V368, P2019