PRESERVATION OF DEPTH IN THE LOCAL GEOMETRIC LANGLANDS CORRESPONDENCE

被引:8
作者
Chen, Tsao-Hsien [1 ]
Kamgarpour, Masoud [2 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Local geometric Langlands; Moy-Prasad Theory; slope of connections; opers; affine vertex algebras; Segal-Sugwara operators; LIE GROUP; REPRESENTATIONS; ALGEBRAS; MODULES;
D O I
10.1090/tran/6794
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is expected that, under mild conditions, the local Langlands correspondence preserves depths of representations. In this article, we formulate a conjectural geometrisation of this expectation. We prove half of this conjecture by showing that the depth of a categorical representation of the loop group is greater than or equal to the depth of its underlying geometric Langlands parameter. A key ingredient of our proof is a new definition of the slope of a meromorphic connection, a definition which uses opers.
引用
收藏
页码:1345 / 1364
页数:20
相关论文
共 38 条
  • [1] Butterflies I: Morphisms of 2-group stacks
    Aldrovandi, Ettore
    Noohi, Behrang
    [J]. ADVANCES IN MATHEMATICS, 2009, 221 (03) : 687 - 773
  • [2] [Anonymous], I HAUTES ETUDES SCI
  • [3] [Anonymous], 2009, REPRESENTATION THEOR
  • [4] [Anonymous], ADV SER MATH PHYS
  • [5] BABBITT DG, 1983, PAC J MATH, V109, P1
  • [6] Beilinson A, 2006, PROG MATH, V243, P51
  • [7] Beilinson A., 2005, OPERS
  • [8] Beilinson A., 1997, Quantization of Hitchin's integrable system and Hecke eigensheaves
  • [9] Bruhat F., 1984, Publications Mathematiques, P197
  • [10] On Higher-Order Sugawara Operators
    Chervov, A. V.
    Molev, A. I.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (09) : 1612 - 1635