On almost automorphic dynamics in symbolic lattices

被引:16
作者
Berger, A
Siegmund, S
Yi, YF
机构
[1] Vienna Univ Technol, Inst Mech, A-1040 Vienna, Austria
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.1017/S0143385703000609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, structure and topological entropy of almost automorphic arrays in symbolic lattice dynamical systems. In particular, we show that almost automorphic arrays with arbitrarily large entropy are typical in symbolic lattice dynamical systems. Applications to pattern formation and spatial chaos in infinite-dimensional lattice systems are considered and the construction of chaotic almost automorphic signals is discussed.
引用
收藏
页码:677 / 696
页数:20
相关论文
共 43 条
[11]  
Downarowicz T, 1998, STUD MATH, V130, P149
[12]  
Downarowicz T., 1995, C MATH, V68, P219
[13]  
Ellis R., 1969, LECT TOPOLOGICAL DYN
[14]   ON ALMOST 1-1 EXTENSIONS [J].
FURSTENBERG, H ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 65 (03) :311-322
[15]  
Furstenberg H., 1967, MATH SYST THEORY, V1, P1, DOI [10.1007/BF01692494, DOI 10.1007/BF01692494]
[16]   Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows [J].
Gjerde, R ;
Johansen, O .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :1687-1710
[17]  
GOTTSCHALK W, 1955, AM MATH SOC C, V36
[18]   ON ENTROPY OF UNIQUELY ERGODIC TRANSFORMATIONS [J].
HAHN, F ;
KATZNELS.Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 126 (02) :335-&
[19]  
HEWITT E, 1963, ABSTR HARM AN, V1
[20]  
IWANIK A, 1994, STUD MATH, V110, P191