On almost automorphic dynamics in symbolic lattices

被引:16
作者
Berger, A
Siegmund, S
Yi, YF
机构
[1] Vienna Univ Technol, Inst Mech, A-1040 Vienna, Austria
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.1017/S0143385703000609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, structure and topological entropy of almost automorphic arrays in symbolic lattice dynamical systems. In particular, we show that almost automorphic arrays with arbitrarily large entropy are typical in symbolic lattice dynamical systems. Applications to pattern formation and spatial chaos in infinite-dimensional lattice systems are considered and the construction of chaotic almost automorphic signals is discussed.
引用
收藏
页码:677 / 696
页数:20
相关论文
共 43 条
[1]   CHAOS OF TRAVELING WAVES IN A DISCRETE CHAIN OF DIFFUSIVELY COUPLED MAPS [J].
AFRAIMOVICH, VS ;
NEKORKIN, VI .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (03) :631-637
[2]  
Allouche J.-P., 1992, ENSEIGN MATH, V38, P315
[3]  
[Anonymous], 1996, J DYN DIFFER EQU
[4]  
ARTUSO R, 1990, CHAOS ORDER PATTERNS
[5]  
BERGER A, 2001, CHAOS CHANCE
[6]  
Bochner S., 1995, U POLITEC TORINO REN, V15, P225
[7]  
Brown J., 1976, PURE APPL MATH, V70
[8]   PATTERN-FORMATION AND SPATIAL CHAOS IN LATTICE DYNAMICAL-SYSTEMS .1. [J].
CHOW, SN ;
MALLETPARET, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (10) :746-751
[9]  
CHOW SN, 1996, RANDOM COMPUT DYN, V4, P109
[10]   CELLULAR NEURAL NETWORKS - THEORY [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1257-1272