Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors

被引:87
作者
Li, HL
Markowich, P
Mei, M
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
[3] Univ Vienna, Inst Math, A-1090 Vienna, Austria
[4] Vienna Univ Technol, Inst Appl Math & Numer Anal, A-1040 Vienna, Austria
关键词
D O I
10.1017/S0308210500001670
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Degond and Markowich discussed the existence and uniqueness of a steady-state solution in the subsonic case for the one-dimensional hydrodynamic model of semiconductors. In the present paper, we reconsider the existence and uniqueness of a globally smooth subsonic steady-state solution, and prove its stability for small perturbation. The proof method we adopt in this paper is based on elementary energy estimates.
引用
收藏
页码:359 / 378
页数:20
相关论文
共 37 条
[1]  
Ascher U. M., 1991, Mathematical Models & Methods in Applied Sciences, V1, P347, DOI 10.1142/S0218202591000174
[2]   TRANSPORT EQUATIONS FOR ELECTRONS IN 2- VALLEY SEMICONDUCTORS [J].
BLOTEKJAER, K .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1970, ED17 (01) :38-+
[3]   Particle hydrodynamic moment models in biology and microelectronics: singular relaxation limits [J].
Chen, GQ ;
Jerome, JW ;
Zhang, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) :233-244
[4]   Convergence of shock capturing schemes for the compressible Euler-Poisson equations [J].
Chen, GQ ;
Wang, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (02) :333-364
[5]   A STEADY-STATE POTENTIAL FLOW MODEL FOR SEMICONDUCTORS [J].
DEGOND, P ;
MARKOWICH, PA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 165 :87-98
[6]  
Degond P., 1990, APPL MATH LETT, V3, P25, DOI DOI 10.1016/0893-9659(90)90130-4
[7]   Steady-state solutions of a one-dimensional hydrodynamic model for semiconductors [J].
Fang, WF ;
Ito, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (02) :224-244
[8]  
GAMBA IM, 1992, COMMUN PART DIFF EQ, V17, P553
[9]  
Gamba IM, 1996, COMMUN PUR APPL MATH, V49, P999
[10]   The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors [J].
Gasser, I ;
Natalini, R .
QUARTERLY OF APPLIED MATHEMATICS, 1999, 57 (02) :269-282