Machine-learning Prediction of Infrared Spectra of Interstellar Polycyclic Aromatic Hydrocarbons

被引:23
作者
Kovacs, Peter [1 ]
Zhu, Xiaosi [2 ]
Carrete, Jesus [1 ]
Madsen, Georg K. H. [1 ]
Wang, Zhao [1 ,2 ]
机构
[1] TU Wien, Inst Mat Chem, A-1060 Vienna, Austria
[2] Guangxi Univ, Dept Phys, Lab Relativist Astrophys, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Polycyclic aromatic hydrocarbons; Interstellar molecules; Infrared astronomy; Neural networks; MOLECULAR DESIGN; EMISSION; GENERATION; SIMULATION; DUST;
D O I
10.3847/1538-4357/abb5b6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We design and train a neural network (NN) model to efficiently predict the infrared spectra of interstellar polycyclic aromatic hydrocarbons with a computational cost many orders of magnitude lower than what a first-principles calculation would demand. The input to the NN is based on the Morgan fingerprints extracted from the skeletal formulas of the molecules and does not require precise geometrical information such as interatomic distances. The model shows excellent predictive skill for out-of-sample inputs, making it suitable for improving the mixture models currently used for understanding the chemical composition and evolution of the interstellar medium. We also identify the constraints to its applicability caused by the limited diversity of the training data and estimate the prediction errors using a ensemble of NNs trained on subsets of the data. With help from other machine-learning methods like random forests, we dissect the role of different chemical features in this prediction. The power of these topological descriptors is demonstrated by the limited effect of including detailed geometrical information in the form of Coulomb matrix eigenvalues.
引用
收藏
页数:9
相关论文
共 61 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons
    Allamandola, LJ
    Hudgins, DM
    Sandford, SA
    [J]. ASTROPHYSICAL JOURNAL, 1999, 511 (02) : L115 - L119
  • [3] INTERSTELLAR POLYCYCLIC AROMATIC-HYDROCARBONS - THE INFRARED-EMISSION BANDS, THE EXCITATION EMISSION MECHANISM, AND THE ASTROPHYSICAL IMPLICATIONS
    ALLAMANDOLA, LJ
    TIELENS, AGGM
    BARKER, JR
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1989, 71 (04) : 733 - 775
  • [4] PAH EMISSION AT THE BRIGHT LOCATIONS OF PDRs: THE grandPAH HYPOTHESIS
    Andrews, H.
    Boersma, C.
    Werner, M. W.
    Livingston, J.
    Allamandola, L. J.
    Tielens, A. G. G. M.
    [J]. ASTROPHYSICAL JOURNAL, 2015, 807 (01)
  • [5] THE NASA AMES POLYCYCLIC AROMATIC HYDROCARBON INFRARED SPECTROSCOPIC DATABASE: THE COMPUTED SPECTRA
    Bauschlicher, C. W., Jr.
    Boersma, C.
    Ricca, A.
    Mattioda, A. L.
    Cami, J.
    Peeters, E.
    de Armas, F. Sanchez
    Saborido, G. Puerta
    Hudgins, D. M.
    Allamandola, L. J.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2010, 189 (02) : 341 - 351
  • [6] The NASA Ames PAH IR Spectroscopic Database: Computational Version 3.00 with Updated Content and the Introduction of Multiple Scaling Factors
    Bauschlicher, Charles W., Jr.
    Ricca, A.
    Boersma, C.
    Allamandola, L. J.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2018, 234 (02)
  • [7] Bishop C.M., 1996, Neural networks for pattern recognition
  • [8] THE NASA AMES PAH IR SPECTROSCOPIC DATABASE VERSION 2.00: UPDATED CONTENT, WEB SITE, AND ON(OFF)LINE TOOLS
    Boersma, C.
    Bauschlicher, C. W., Jr.
    Ricca, A.
    Mattioda, A. L.
    Cami, J.
    Peeters, E.
    de Armas, F. Sanchez
    Saborido, G. Puerta
    Hudgins, D. M.
    Allamandola, L. J.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (01)
  • [9] Effect of molecular structure on the infrared signatures of astronomically relevant PAHs
    Bouwman, J.
    Castellanos, P.
    Bulak, M.
    van Scheltinga, J. Terwisscha
    Cami, J.
    Linnartz, H.
    Tielens, A. G. G. M.
    [J]. ASTRONOMY & ASTROPHYSICS, 2019, 621
  • [10] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32