Quantization of the first-order two-dimensional Einstein-Hilbert action

被引:15
|
作者
McKeon, D. G. C. [1 ]
机构
[1] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
关键词
D O I
10.1088/0264-9381/23/9/016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A canonical analysis of the first-order two-dimensional Einstein-Hilbert action has shown it to have no physical degrees of freedom and to possess an unusual gauge symmetry with a symmetric field xi(mu nu) acting as a gauge function. Some consequences of this symmetry are explored. The action is quantized and it is shown that in a 'Landau gauge' all loop diagrams beyond one-loop order vanish. Furthermore, explicit calculation of the one-loop two-point function shows that it too vanishes, with the contribution of the ghost loop cancelling that of the 'graviton' loop.
引用
收藏
页码:3037 / 3042
页数:6
相关论文
共 50 条
  • [41] 5-DIMENSIONAL SOLUTIONS FOR THE MODIFIED EINSTEIN-HILBERT LAGRANGIAN
    HALPERN, P
    KERRICK, D
    GENERAL RELATIVITY AND GRAVITATION, 1993, 25 (01) : 41 - 53
  • [42] A novel probe of Einstein-Hilbert action: Dynamic upgradation of metric parameters
    Krishnakanta Bhattacharya
    General Relativity and Gravitation, 2022, 54
  • [43] On the KG-constrained general disformal transformation of the Einstein-Hilbert action
    Alinea, Allan L.
    Ordonez, Joshwa D. J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (31):
  • [44] A novel probe of Einstein-Hilbert action: Dynamic upgradation of metric parameters
    Bhattacharya, Krishnakanta
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (08)
  • [45] HAMILTONIAN EMBEDDING OF EINSTEIN-HILBERT ACTION IN (1+1) DIMENSIONS
    Monemzadeh, M.
    Nikoofard, V.
    Ramezani-Arani, R.
    MODERN PHYSICS LETTERS A, 2011, 26 (26) : 1995 - 2006
  • [46] Melting in two-dimensional systems: Characterizing continuous and first-order transitions
    Toledano, Oscar
    Pancorbo, M.
    Alvarellos, J. E.
    Galvez, Oscar
    PHYSICAL REVIEW B, 2021, 103 (09)
  • [47] Hysteresis and first-order phase transition in the two-dimensional electron gas
    Piazza, V
    Pellegrini, V
    Beltram, F
    Wegscheider, W
    Bichler, M
    Jungwirth, T
    MacDonald, AH
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2000, 6 (1-4): : 108 - 111
  • [48] On the expressive power of first-order modal logic with two-dimensional operators
    Kocurek, Alexander W.
    SYNTHESE, 2018, 195 (10) : 4373 - 4417
  • [49] On the expressive power of first-order modal logic with two-dimensional operators
    Alexander W. Kocurek
    Synthese, 2018, 195 : 4373 - 4417
  • [50] Estimates for the Scattering Map Associated with a Two-Dimensional First-Order System
    R. M. Brown
    Journal of Nonlinear Science, 2001, 11 : 459 - 471