Quantization of the first-order two-dimensional Einstein-Hilbert action

被引:15
|
作者
McKeon, D. G. C. [1 ]
机构
[1] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
关键词
D O I
10.1088/0264-9381/23/9/016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A canonical analysis of the first-order two-dimensional Einstein-Hilbert action has shown it to have no physical degrees of freedom and to possess an unusual gauge symmetry with a symmetric field xi(mu nu) acting as a gauge function. Some consequences of this symmetry are explored. The action is quantized and it is shown that in a 'Landau gauge' all loop diagrams beyond one-loop order vanish. Furthermore, explicit calculation of the one-loop two-point function shows that it too vanishes, with the contribution of the ghost loop cancelling that of the 'graviton' loop.
引用
收藏
页码:3037 / 3042
页数:6
相关论文
共 50 条
  • [21] A canonical approach to the Einstein-Hilbert action in two spacetime dimensions
    Kiriushcheva, N
    Kuzmin, SV
    McKeon, DGC
    MODERN PHYSICS LETTERS A, 2005, 20 (25) : 1895 - 1902
  • [22] EXTENDED GRAVITY THEORIES AND THE EINSTEIN-HILBERT ACTION
    WANDS, D
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (01) : 269 - 279
  • [23] Pomeron interactions from the Einstein-Hilbert action
    Iatrakis, Ioannis
    Ramamurti, Adith
    Shuryak, Edward
    PHYSICAL REVIEW D, 2016, 94 (04)
  • [24] Symmetry breaking in conformal Einstein-Hilbert action
    Tanhayi, M. R.
    Ejlali, S.
    CANADIAN JOURNAL OF PHYSICS, 2015, 93 (11) : 1352 - 1355
  • [25] Einstein-Hilbert action on the brane for the bulk graviton
    Corley, S
    Lowe, DA
    Ramgoolam, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (07):
  • [26] On the variation of the Einstein-Hilbert action in pseudohermitian geometry
    Afeltra, Claudio
    Cheng, Jih-Hsin
    Malchiodi, Andrea
    Yang, Paul
    Wang, Xiaodong
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (813): : 81 - 102
  • [27] New Einstein-Hilbert type action and unity of nature
    Shima, K
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 297 - 300
  • [28] The Einstein-Hilbert action for entropically dominant causal sets
    Carlip, Peter
    Carlip, Steve
    Surya, Sumati
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (14)
  • [29] Palatini variational principle for an extended Einstein-Hilbert action
    Burton, H
    Mann, RB
    PHYSICAL REVIEW D, 1998, 57 (08) : 4754 - 4759
  • [30] UNIQUE ONE-LOOP EFFECTIVE ACTION FOR THE 6-DIMENSIONAL EINSTEIN-HILBERT ACTION
    CHO, HT
    KANTOWSKI, R
    PHYSICAL REVIEW LETTERS, 1991, 67 (04) : 422 - 425