FRECHET DIFFERENTIABILITY OF THE NORM IN A SOBOLEV SPACE WITH A VARIABLE EXPONENT

被引:3
作者
Ciarlet, Philippe G. [1 ]
Dinca, George [2 ]
Matei, Pavel [3 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
[3] Tech Univ Civil Engn, Dept Math & Comp Sci, Bucharest 020396, Romania
关键词
Sobolev space with variable exponent; smooth space; Frechet differentiability of the norm; uniform convex space; GEOMETRY;
D O I
10.1142/S0219530513500127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a domain in R-N, let p(.) is an element of C((Omega) over bar) be such that p(x) > 1 for all x is an element of (Omega) over bar, let W-1,W-p(.)(Omega) be the Sobolev space with variable exponent p(.), let Gamma(0) be a d Gamma-measurable subset of Gamma = partial derivative Omega that satisfies d Gamma-meas Gamma(0) > 0, and let U-Gamma 0 = {u is an element of W-1,W-p(.)(Omega); tr u = 0 on Gamma(0)}. It is shown that the map u is an element of U-Gamma 0 bar right arrow parallel to u parallel to(0),(p(.)),(del) = parallel to vertical bar del u vertical bar parallel to(0),(p(.)) is a Frechet-differentiable norm on U-Gamma 0, and a formula expressing the Frechet derivative of this norm at any nonzero u is an element of U-Gamma 0 is given. We also show that, if p(x) >= 2 for all x is an element of (Omega) over bar, (U-Gamma 0, parallel to u parallel to(0),(p(.)),(del)) is uniformly convex. Using properties of duality mappings defined on Banach spaces having a Frechet-differentiable norm, we give the explicit form of continuous linear functionals on (U-Gamma 0, parallel to u parallel to(0),(p(.)),(del)). It is also shown that the space U-Gamma 0 and its dual have the same Krein-Krasnoselski-Milman dimension.
引用
收藏
页数:31
相关论文
共 26 条
  • [1] Adams R., 1985, Sobolev Spaces
  • [2] [Anonymous], 1976, GEOMETRY BANACH SPAC
  • [3] [Anonymous], 1976, Funct. Approx. Comment. Math.
  • [4] Beurling A., 1964, ARK MATH, V4, P405
  • [5] Brezis H., 2011, FUNCTIONAL ANAL SOBO
  • [6] A Poincare Inequality in a Sobolev Space with a Variable Exponent
    Ciarlet, Philippe G.
    Dinca, George
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (03) : 333 - 342
  • [7] Diening L, 2004, MATH INEQUAL APPL, V7, P245
  • [8] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [9] Dinca G., 2001, Portugaliae Mathematica. Nova Serie, V58, P339
  • [10] Dinca G, 2012, TOPOL METHOD NONL AN, V40, P181