Representations of solvable Lie groups and geometric quantization

被引:0
|
作者
Zhao, Q
Xiao, L
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] NW Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
Li group; quantization; polarization; coadjoint orbit;
D O I
10.1142/S0252959999000400
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Representations of solvable Lie groups are realized and classified by geometric quantization of coadjoint orbits through positive polarizations.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 50 条
  • [21] Estimate of the L~p-Fourier Transform Norm on Strong *-Regular Exponential Solvable Lie Groups
    A.BAKLOUTI
    J.LUDWIG
    L.SCUTO
    K.SMAOUI
    Acta Mathematica Sinica(English Series), 2007, 23 (07) : 1173 - 1188
  • [22] Berezin Quantization and Holomorphic Representations
    Cahen, Benjamin
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2013, 129 : 277 - 297
  • [23] Geometric Potential and Dirac Quantization
    Lian, Dingkun
    Hu, Liangdong
    Liu, Quanhui
    ANNALEN DER PHYSIK, 2018, 530 (05)
  • [24] On quantization of quasi-Lie bialgebras
    Sakalos, Stefan
    Severa, Pavol
    Selecta Mathematica-New Series, 2015, 21 (02): : 649 - 725
  • [25] Quantization of the Lie superalgebra of Witt type
    Su, Yucai
    Yue, Xiaoqing
    Zhu, Xiaoyu
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [26] QUANTIZATION OF LIE ALGEBRAS OF BLOCK TYPE
    Cheng Yongsheng
    Su Yucai
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (04) : 1134 - 1142
  • [27] On quantization of quasi-Lie bialgebras
    Štefan Sakáloš
    Pavol Ševera
    Selecta Mathematica, 2015, 21 : 649 - 725
  • [28] Quantum kinematics and geometric quantization
    Qiang, Z
    JOURNAL OF GEOMETRY AND PHYSICS, 1996, 21 (01) : 34 - 42
  • [29] QUANTIZATION OF LIE ALGEBRAS OF BLOCK TYPE
    程永胜
    苏育才
    Acta Mathematica Scientia, 2010, 30 (04) : 1134 - 1142
  • [30] Decomposition of quasi-regular representations induced from discrete subgroups of nilpotent lie groups
    Hamrouni, Hatem
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 81 (02) : 135 - 150