Multistability in networks of Hindmarsh-Rose neurons

被引:52
作者
Erichsen, R., Jr. [1 ]
Brunnet, L. G. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 06期
关键词
neural nets;
D O I
10.1103/PhysRevE.78.061917
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the dynamical states of a two-dimensional network of Hindmarsh-Rose spiking neurons, in the vicinity of the current threshold where the single neuron becomes active. Each neuron is electrically coupled with neurons in its close neighborhood. The existence of multistable synchronization states is established and discussed. We also show that, provided adequate initial conditions, the collective behavior is able to keep the network in activity, even for current values far below the activity threshold of the single neuron. A phase diagram of the different network states is presented for a large interval of the coupling-current parameter space.
引用
收藏
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 1990, DISSIPATIVE STRUCTUR, DOI DOI 10.1016/B978-0-08-092445-8.50011-0
[2]  
Benettin G., 1980, Meccanica, V15, P21, DOI [DOI 10.1007/BF02128237, 10.1007/BF02128237]
[3]   Phase coherence in chaotic oscillatory media [J].
Brunnet, LG ;
Chate, H .
PHYSICA A, 1998, 257 (1-4) :347-356
[4]   Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons [J].
Erichsen, R., Jr. ;
Mainieri, M. S. ;
Brunnet, L. G. .
PHYSICAL REVIEW E, 2006, 74 (06)
[5]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[6]   A MODEL OF THE NERVE IMPULSE USING 2 1ST-ORDER DIFFERENTIAL-EQUATIONS [J].
HINDMARSH, JL ;
ROSE, RM .
NATURE, 1982, 296 (5853) :162-164
[7]   A MODEL OF NEURONAL BURSTING USING 3 COUPLED 1ST ORDER DIFFERENTIAL-EQUATIONS [J].
HINDMARSH, JL ;
ROSE, RM .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1984, 221 (1222) :87-102
[8]   Clusters of synchronization and bistability in lattices of chaotic neurons [J].
Huerta, R ;
Bazhenov, M ;
Rabinovich, MI .
EUROPHYSICS LETTERS, 1998, 43 (06) :719-724
[9]   Time evolution of coherent structures in networks of Hindmarch-Rose neurons [J].
Mainieri, MS ;
Erichsen, R ;
Brunnet, LG .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 354 (354) :663-671
[10]   Multi-state coupled map lattices [J].
Martins, LC ;
Brunnet, LG .
PHYSICA A, 2001, 296 (1-2) :119-130