Non-paraxial vectorial moment theory of light beam propagation

被引:71
作者
Porras, MA
机构
[1] Depto. de Física Aplicada, Escuela de Ingenieros de Minas, Univ. Politécnica de Madrid., 28003 Madrid
关键词
D O I
10.1016/0030-4018(96)00089-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The cross sections of arbitrary-shaped non-paraxial light beams are characterized by the zero, first and second order moments of the energy flux spatial distribution. On the basis of the Maxwell equations and a plane wave spectrum representation of electromagnetic fields, the laws governing the change of these moments upon free beam propagation are found. In particular, the change of the second-moment-based width is found to be hyperbolic. The moment-based parameters are calculated and the hyperbolic law applied to some particular non-paraxial beam-like electromagnetic field models to show some new features that arise from this non-paraxial vectorial theory.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 14 条
[1]   GAUSSIAN-BEAM PROPAGATION BEYOND THE PARAXIAL APPROXIMATION [J].
AGRAWAL, GP ;
PATTANAYAK, DN .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1979, 69 (04) :575-578
[2]   BEAM-PROPAGATION FACTOR OF DIFFRACTED LASER-BEAMS [J].
BELANGER, PA ;
CHAMPAGNE, Y ;
PARE, C .
OPTICS COMMUNICATIONS, 1994, 105 (3-4) :233-242
[3]   BEAM PROPAGATION AND THE ABCD RAY MATRICES [J].
BELANGER, PA .
OPTICS LETTERS, 1991, 16 (04) :196-198
[4]  
Born M., 1986, PRINCIPLES OPTICS
[5]  
DIFRANCIA GT, 1953, ONDE ELETTROMAGNETIC
[6]  
LANDAU LD, 1960, CLASSICAL THEORY FIE
[7]   MAXWELL TO PARAXIAL WAVE OPTICS [J].
LAX, M ;
LOUISELL, WH ;
MCKNIGHT, WB .
PHYSICAL REVIEW A, 1975, 11 (04) :1365-1370
[8]   COMPLEX BEAM PARAMETER AND ABCD LAW FOR NON-GAUSSIAN AND NONSPHERICAL LIGHT-BEAMS [J].
PORRAS, MA ;
ALDA, J ;
BERNABEU, E .
APPLIED OPTICS, 1992, 31 (30) :6389-6402
[9]   NONLINEAR PROPAGATION AND TRANSFORMATION OF ARBITRARY LASER-BEAMS BY MEANS OF THE GENERALIZED ABCD FORMALISM [J].
PORRAS, MA ;
ALDA, J ;
BERNABEU, E .
APPLIED OPTICS, 1993, 32 (30) :5885-5892
[10]   THE BEST QUALITY OPTICAL BEAM BEYOND THE PARAXIAL APPROXIMATION [J].
PORRAS, MA .
OPTICS COMMUNICATIONS, 1994, 111 (3-4) :338-349