Multi-structure local binary patterns for texture classification

被引:14
作者
He, Yonggang [1 ]
Sang, Nong [1 ]
Gao, Changxin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Sci & Technol Multispectral Informat Proc Lab, Wuhan 430074, Peoples R China
关键词
Local binary pattern; Image pyramid; Texture classification; Isotropic; Anisotropic; RECOGNITION; RETRIEVAL; FEATURES;
D O I
10.1007/s10044-011-0264-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, the local binary patterns (LBP) have been widely used in the texture classification. The LBP methods obtain the binary pattern by comparing the gray scales of pixels on a small circular region with the gray scale of their central pixel. The conventional LBP methods only describe microstructures of texture images, such as edges, corners, spots and so on, although many of them show good performances on the texture classification. This situation still could not be changed, even though the multi-resolution analysis technique is adopted by LBP methods. Moreover, the circular sampling region limits the ability of the conventional LBP methods in describing anisotropic features. In this paper, we change the shape of sampling region and get an extended LBP operator. And a multi-structure local binary pattern (Ms-LBP) operator is achieved by executing the extended LBP operator on different layers of an image pyramid. Thus, the proposed method is simple yet efficient to describe four types of structures: isotropic microstructure, isotropic macrostructure, anisotropic microstructure and anisotropic macrostructure. We demonstrate the performance of our method on two public texture databases: the Outex and the CUReT. The experimental results show the advantages of the proposed method.
引用
收藏
页码:595 / 607
页数:13
相关论文
共 32 条
[1]   Face description with local binary patterns:: Application to face recognition [J].
Ahonen, Timo ;
Hadid, Abdenour ;
Pietikainen, Matti .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) :2037-2041
[2]  
Ahonen T, 2009, LECT NOTES COMPUT SC, V5575, P61, DOI 10.1007/978-3-642-02230-2_7
[3]  
[Anonymous], P BRIT MACH VIS C
[4]  
[Anonymous], P ICPR
[5]  
[Anonymous], PROCEEDINGS OF THE 1
[6]   Content-Based Image Retrieval Using Multiresolution Color and Texture Features [J].
Chun, Young Deok ;
Kim, Nam Chul ;
Jang, Ick Hoon .
IEEE TRANSACTIONS ON MULTIMEDIA, 2008, 10 (06) :1073-1084
[7]   A Completed Modeling of Local Binary Pattern Operator for Texture Classification [J].
Guo, Zhenhua ;
Zhang, Lei ;
Zhang, David .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) :1657-1663
[8]   Rotation invariant texture classification using LBP variance (LBPV) with global matching [J].
Guo, Zhenhua ;
Zhang, Lei ;
Zhang, David .
PATTERN RECOGNITION, 2010, 43 (03) :706-719
[9]   TEXTURAL FEATURES FOR IMAGE CLASSIFICATION [J].
HARALICK, RM ;
SHANMUGAM, K ;
DINSTEIN, I .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1973, SMC3 (06) :610-621
[10]  
He Y., 2010, LNCS, P133