Tensor Decomposition for Link Prediction in Temporal Knowledge Graphs

被引:1
作者
Chekol, Melisachew Wudage [1 ]
机构
[1] Univ Utrecht, Utrecht, Netherlands
来源
PROCEEDINGS OF THE 11TH KNOWLEDGE CAPTURE CONFERENCE (K-CAP '21) | 2021年
关键词
temporal knowledge graph; link prediction; graph embedding;
D O I
10.1145/3460210.3493558
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study temporal knowledge graph completion by using tensor decomposition. In particular, we use Candecomp/Parafac decomposition to factorize a given four dimensional sparse representation of a temporal knowledge graph into rank-one tensors that correspond to entities (subject and object), relations and timestamps. Using the factorized tensors, we can perform link and timestamp prediction. We compared our approach against the state of the art and found out that we are highly competitive. We report our preliminary experimental results on 5 different datasets.
引用
收藏
页码:253 / 256
页数:4
相关论文
共 30 条
[1]  
[Anonymous], 1927, J MATH PHYS CAMB, DOI [DOI 10.1002/SAPM192761164, 10.1002/sapm192761164]
[2]  
Dasgupta SS, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P2001
[3]  
Duchi J, 2011, J MACH LEARN RES, V12, P2121
[4]   NUCLEAR NORM OF HIGHER-ORDER TENSORS [J].
Friedland, Shmuel ;
Lim, Lek-Heng .
MATHEMATICS OF COMPUTATION, 2018, 87 (311) :1255-1281
[5]  
García-Durán A, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P4816
[6]  
Goel R, 2020, AAAI CONF ARTIF INTE, V34, P3988
[7]  
Goel Rishab, 2019, arXiv
[8]  
Han Z, 2020, Arxiv, DOI arXiv:2003.13432
[9]   YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia [J].
Hoffart, Johannes ;
Suchanek, Fabian M. ;
Berberich, Klaus ;
Weikum, Gerhard .
ARTIFICIAL INTELLIGENCE, 2013, 194 :28-61
[10]  
Jiang T., 2016, P 2016 C EMP METH NA, P2350, DOI DOI 10.18653/V1/D16-1260