On the Use of Information Theory to Quantify Parameter Uncertainty in Groundwater Modeling

被引:2
|
作者
Noronha, Alston [1 ]
Lee, Jejung [2 ]
机构
[1] Black & Veatch Consulting Engineers, Indianapolis, IN 46250 USA
[2] Univ Missouri, Dept Geosci, Kansas City, MO 64110 USA
关键词
information theory; groundwater modeling; parameter uncertainty; INVERSION; ENTROPY; FLOW;
D O I
10.3390/e15062398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We applied information theory to quantify parameter uncertainty in a groundwater flow model. A number of parameters in groundwater modeling are often used with lack of knowledge of site conditions due to heterogeneity of hydrogeologic properties and limited access to complex geologic structures. The present Information Theory-based (ITb) approach is to adopt entropy as a measure of uncertainty at the most probable state of hydrogeologic conditions. The most probable conditions are those at which the groundwater model is optimized with respect to the uncertain parameters. An analytical solution to estimate parameter uncertainty is derived by maximizing the entropy subject to constraints imposed by observation data. MODFLOW-2000 is implemented to simulate the groundwater system and to optimize the unknown parameters. The ITb approach is demonstrated with a three-dimensional synthetic model application and a case study of the Kansas City Plant. Hydraulic heads are the observations and hydraulic conductivities are assumed to be the unknown parameters. The applications show that ITb is capable of identifying which inputs of a groundwater model are the most uncertain and what statistical information can be used for site exploration.
引用
收藏
页码:2398 / 2414
页数:17
相关论文
共 50 条
  • [1] Integrated Bayesian Multi-model approach to quantify input, parameter and conceptual model structure uncertainty in groundwater modeling
    Mustafa, Syed Md Touhidul
    Nossent, Jiri
    Ghysels, Gert
    Huysmans, Marijke
    ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 126
  • [2] Assessing Bayesian model averaging uncertainty of groundwater modeling based on information entropy method
    Zeng, Xiankui
    Wu, Jichun
    Wang, Dong
    Zhu, Xiaobin
    Long, Yuqiao
    JOURNAL OF HYDROLOGY, 2016, 538 : 689 - 704
  • [3] Stochastic-based approach to quantify the uncertainty of groundwater vulnerability
    Ni, Chuen-Fa
    Vu, Tien-Duc
    Li, Wei-Ci
    Tran, Minh-Tuan
    Bui, Van-Cuong
    Truong, Minh-Hoang
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (05) : 1897 - 1915
  • [4] Combined use of groundwater modeling and potential zone analysis for management of groundwater
    Gaur, Shishir
    Chahar, B. R.
    Graillot, Didier
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2011, 13 (01): : 127 - 139
  • [5] Parameter uncertainty modeling of safety instrumented systems
    Cai, Bao-Ping
    Li, Wen-Chao
    Liu, Yong-Hong
    Zhang, Yan-Ping
    Zhao, Yi
    Kong, Xiang-Di
    Liu, Zeng-Kai
    Ji, Ren-Jie
    Feng, Qiang
    PETROLEUM SCIENCE, 2021, 18 (06) : 1813 - 1828
  • [6] PARAMETER UNCERTAINTY IN MODELING BIOACCUMULATION FACTORS OF FISH
    Hauck, Mara
    Hendriks, Harrie W. M.
    Huijbregts, Mark A. J.
    Ragas, Ad M. J.
    van de Meent, Dik
    Hendriks, A. Jan
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2011, 30 (02) : 403 - 412
  • [7] Importance of Parameter Uncertainty in the Modeling of Geological Variables
    Erten, Oktay
    Deutsch, Clayton V.
    NATURAL RESOURCES RESEARCH, 2024, 33 (04) : 1529 - 1547
  • [8] Instance Theory Predicts Information Theory: Episodic Uncertainty as a Determinant of Keystroke Dynamics
    Crump, Matthew J. C.
    Lai, Walter
    Brosowsky, Nicholaus P.
    CANADIAN JOURNAL OF EXPERIMENTAL PSYCHOLOGY-REVUE CANADIENNE DE PSYCHOLOGIE EXPERIMENTALE, 2019, 73 (04): : 203 - 215
  • [9] Performance Assessment of Model Averaging Techniques to Reduce Structural Uncertainty of Groundwater Modeling
    Jafarzadeh, Ahmad
    Khashei-Siuki, Abbas
    Pourreza-Bilondi, Mohsen
    WATER RESOURCES MANAGEMENT, 2022, 36 (01) : 353 - 377
  • [10] Assessment of parametric uncertainty for groundwater reactive transport modeling
    Shi, Xiaoqing
    Ye, Ming
    Curtis, Gary P.
    Miller, Geoffery L.
    Meyer, Philip D.
    Kohler, Matthias
    Yabusaki, Steve
    Wu, Jichun
    WATER RESOURCES RESEARCH, 2014, 50 (05) : 4416 - 4439