Dispersion relations for the linearized Fokker-Planck equation

被引:87
作者
Degond, P
Lemou, M
机构
[1] UMR MIP CNRS 5640, UFR MIG, Université Paul Sabatier, 31062 Toulouse Cedex
关键词
D O I
10.1007/s002050050038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the spectral properties and dispersion relations for the linearized Fokker-Planck operator in the case of hard potentials, as in ELLIS & PINSKY's work [7] on the Boltzmann equation. Results similar to those in [7] are obtained for the Fokker-Planck operator although the presence of a diffusion operator instead of a multiplication operator introduces many additional technical difficulties.
引用
收藏
页码:137 / 167
页数:31
相关论文
共 14 条
[1]   ON THE CONNECTION BETWEEN A SOLUTION OF THE BOLTZMANN-EQUATION AND A SOLUTION OF THE LANDAU-FOKKER-PLANCK EQUATION [J].
ARSENEV, AA ;
BURYAK, OE .
MATHEMATICS OF THE USSR-SBORNIK, 1991, 69 (02) :465-478
[2]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[4]  
Degond P., 1992, Mathematical Models & Methods in Applied Sciences, V2, P167, DOI 10.1142/S0218202592000119
[5]  
Desvillettes L., 1992, Transport Theory and Statistical Physics, V21, P259, DOI 10.1080/00411459208203923
[6]  
DIPERNA RJ, 1990, ANN MATH, V130, P312
[7]  
ELLIS RS, 1975, J MATH PURE APPL, V54, P125
[8]   STATIONARY SOLUTIONS OF THE LINEARIZED BOLTZMANN-EQUATION IN A HALF-SPACE [J].
GOLSE, F ;
POUPAUD, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1989, 11 (04) :483-502
[9]  
Kato T., 1976, Grundlehren der Mathematischen Wissenschaften, V132
[10]   FLUID-DYNAMICAL APPROXIMATION TO THE BOLTZMANN-EQUATION AT THE LEVEL OF THE NAVIER-STOKES EQUATION [J].
KAWASHIMA, S ;
MATSUMURA, A ;
NISHIDA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (02) :97-124