Hierarchical Modeling for Rare Event Detection and Cell Subset Alignment across Flow Cytometry Samples

被引:53
作者
Cron, Andrew [1 ]
Gouttefangeas, Cecile [2 ]
Frelinger, Jacob [3 ]
Lin, Lin [4 ]
Singh, Satwinder K. [5 ]
Britten, Cedrik M. [6 ]
Welters, Marij J. P. [5 ]
van der Burg, Sjoerd H. [5 ]
West, Mike [1 ,3 ]
Chan, Cliburn [3 ,7 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Univ Tubingen, Dept Immunol, Interfac Inst Cell Biol, Tubingen, Germany
[3] Duke Univ, Program Computat Biol & Bioinformat, Durham, NC USA
[4] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA
[5] Leiden Univ, Med Ctr, Dept Clin Oncol, Leiden, Netherlands
[6] Johannes Gutenberg Univ Mainz gGmbH, Univ Med Ctr, Mainz, Germany
[7] Duke Univ, Med Ctr, Dept Biostat & Bioinformat, Durham, NC USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
IDENTIFICATION; INFERENCE; PANEL;
D O I
10.1371/journal.pcbi.1003130
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less). Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM) approach we have previously described for cell subset identification, and show that the hierarchical DPGMM (HDPGMM) naturally generates an aligned data model that captures both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood mononuclear cell (PBMC) samples with known frequencies of antigen-specific T cells. These cell samples take advantage of retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling is a useful probabilistic approach that can provide a consistent labeling of cell subsets and increase the sensitivity of rare event detection in the context of quantifying antigen-specific immune responses.
引用
收藏
页数:14
相关论文
共 21 条
[1]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/nmeth.2365, 10.1038/NMETH.2365]
[2]  
[Anonymous], 2010, ISBA Bulletin
[3]   The CIMT-monitoring panel:: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays [J].
Britten, C. M. ;
Gouttefangeas, C. ;
Welters, M. J. P. ;
Pawelec, G. ;
Koch, S. ;
Ottensmeier, C. ;
Mander, A. ;
Walter, S. ;
Paschen, A. ;
Mueller-Berghaus, J. ;
Haas, I. ;
Mackensen, A. ;
Kollgaard, T. ;
thor Straten, P. ;
Schmitt, M. ;
Giannopoulos, K. ;
Maier, R. ;
Veelken, H. ;
Bertinetti, C. ;
Konur, A. ;
Huber, C. ;
Stevanovic, S. ;
Woelfel, T. ;
van der Burg, S. H. .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2008, 57 (03) :289-302
[4]   Statistical mixture modeling for cell subtype identification in flow cytometry [J].
Chan, Cliburn ;
Feng, Feng ;
Ottinger, Janet ;
Foster, David ;
West, Mike ;
Kepler, Thomas B. .
CYTOMETRY PART A, 2008, 73A (08) :693-701
[5]   Optimization of a Highly Standardized Carboxyfluorescein Succinimidyl Ester Flow Cytometry Panel and Gating Strategy Design Using Discriminative Information Measure Evaluation [J].
Chan, Cliburn ;
Lin, Lin ;
Frelinger, Jacob ;
Herbert, Valerie ;
Gagnon, Dominic ;
Landry, Claire ;
Sekaly, Rafick-Pierre ;
Enzor, Jennifer ;
Staats, Janet ;
Weinhold, Kent J. ;
Jaimes, Maria ;
West, Mike .
CYTOMETRY PART A, 2010, 77A (12) :1126-1136
[6]   Bayesian nonparametric model for clustering individual co-exposure to pesticides found in the French diet [J].
Crepet, Amelie ;
Tressou, Jessica .
BAYESIAN ANALYSIS, 2011, 6 (01) :127-144
[7]   Efficient Classification-Based Relabeling in Mixture Models [J].
Cron, Andrew J. ;
West, Mike .
AMERICAN STATISTICIAN, 2011, 65 (01) :16-20
[8]  
de Oliveira Sales AP, 2011, THESIS DUKE U
[9]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[10]  
Finak Greg, 2009, Advances in Bioinformatics, V2009, P247646, DOI 10.1155/2009/247646