Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping

被引:12
|
作者
Macchelli, Alessandro [1 ]
Le Gorrec, Yann [2 ]
Ramirez, Hector [3 ]
机构
[1] Univ Bologna, Dept Elect Elect & Informat Engn, I-40136 Bologna, Italy
[2] Univ Bourgogne Franche Comte, CNRS, FEMTO ST Inst, Dept Automat Control & Micromechatron Syst, F-25030 Besancon, France
[3] Univ Tecn Federico Santa Maria, Dept Elect, Valparaiso, Chile
关键词
Damping; Control theory; Stability; Closed loop systems; Convergence; Regulators; Boundary control systems (BCSs); exponential stability; passivity; port-Hamiltonian systems; STABILITY; LAWS;
D O I
10.1109/TAC.2020.3004798
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article is concerned with the exponential stabilization of a class of linear boundary control systems (BCSs) in port-Hamiltonian form through energy shaping. Starting from a first feedback loop that is in charge of modifying the Hamiltonian function of the plant, a second control loop that guarantees exponential convergence to the equilibrium is designed. In this way, a major limitation of standard energy shaping plus damping injection control laws applied to linear port-Hamiltonian BCSs, namely the fact that only asymptotic convergence is assured, has been removed.
引用
收藏
页码:4440 / 4447
页数:8
相关论文
共 50 条
  • [41] Dissipativity-based boundary control of linear distributed port-Hamiltonian systems
    Macchelli, Alessandro
    Califano, Federico
    AUTOMATICA, 2018, 95 : 54 - 62
  • [42] A perturb e d Port-Hamiltonian approach for the stabilization of homogeneous reaction systems via the control of vessel extents
    Nguyen, T. Sang
    Tan, C. K.
    Hoang, N. Ha
    Hussain, M. A.
    Bonvin, D.
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 154
  • [43] On stabilization of nonlinear distributed parameter Port-Controlled Hamiltonian systems via energy-shaping
    Rodríguez, H
    van der Schaft, AJ
    Ortega, R
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 131 - 136
  • [44] Stabilization of Unstable Distributed Port-Hamiltonian Systems in Scattering Form
    Macchelli, Alessandro
    Le Gorrec, Yann
    Ramirez, Hector
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3116 - 3121
  • [45] Energy Shaping of Port-Hamiltonian Systems by Using Alternate Passive Input-Output Pairs
    Venkatraman, Aneesh
    van der Schaft, Arjan
    EUROPEAN JOURNAL OF CONTROL, 2010, 16 (06) : 665 - 677
  • [46] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [47] Exponential decay rate bound of one-dimensional distributed port-Hamiltonian systems with boundary dissipation
    Mora, Luis A.
    Morris, Kirsten
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 409 - 414
  • [48] Stabilization of Discrete Port-Hamiltonian Dynamics via Interconnection and Damping Assignment
    Moreschini, Alessio
    Mattioni, Mattia
    Monaco, Salvatore
    Normand-Cyrot, Dorothee
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 103 - 108
  • [49] Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach
    Ramirez, Hector
    Maschke, Bernhard
    Sbarbaro, Daniel
    EUROPEAN JOURNAL OF CONTROL, 2013, 19 (06) : 513 - 520
  • [50] On Structural Invariants in the Energy Based Control of Port-Hamiltonian Systems with Second-Order Hamiltonian
    Rams, Hubert
    Schoeberl, Markus
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 1139 - 1144