Knot theory and cluster algebras

被引:5
|
作者
Bazier-Matte, Veronique [1 ]
Schiffler, Ralf [2 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
基金
英国工程与自然科学研究理事会;
关键词
Knot; Cluster algebra; Quiver with potential; Jacobian algebra; Kauffman state; Alexander polynomial; QUIVERS; POTENTIALS;
D O I
10.1016/j.aim.2022.108609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a connection between knot theory and cluster algebras via representation theory. To every knot diagram (or link diagram), we associate a cluster algebra by constructing a quiver with potential. The rank of the cluster algebra is 2n, where n is the number of crossing points in the knot diagram. We then construct 2n indecomposable modules T(i) over the Jacobian algebra of the quiver with potential. For each T(i), we show that the submodule lattice is isomorphic to the corresponding lattice of Kauffman states. We then give a realization of the Alexander polynomial of the knot as a specialization of the F-polynomial of T(i), for every i. Furthermore, we conjecture that the collection of the T(i) forms a cluster in the cluster algebra whose quiver is isomorphic to the opposite of the initial quiver, and that the resulting cluster automorphism is of order two. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 50 条
  • [21] Internally Calabi–Yau algebras and cluster-tilting objects
    Matthew Pressland
    Mathematische Zeitschrift, 2017, 287 : 555 - 585
  • [22] Denominators in cluster algebras of affine type
    Buan, Aslak Bakke
    Marsh, Bethany Rose
    JOURNAL OF ALGEBRA, 2010, 323 (08) : 2083 - 2102
  • [23] Atomic bases of cluster algebras of types A and A
    Dupont, Gregoire
    Thomas, Hugh
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 825 - 850
  • [24] Linear independence of cluster monomials for skew-symmetric cluster algebras
    Irelli, Giovanni Cerulli
    Keller, Bernhard
    Labardini-Fragoso, Daniel
    Plamondon, Pierre-Guy
    COMPOSITIO MATHEMATICA, 2013, 149 (10) : 1753 - 1764
  • [25] A CONJECTURE ON CLUSTER AUTOMORPHISMS OF CLUSTER ALGEBRAS
    Cao, Peigen
    Li, Fang
    Liu, Siyang
    Pan, Jie
    ELECTRONIC RESEARCH ARCHIVE, 2019, 27 : 1 - 6
  • [26] AN INDEX OF A GRAPH WITH APPLICATIONS TO KNOT-THEORY
    MURASUGI, K
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 106 (508) : R3 - &
  • [27] Quasoids in Knot Theory
    F. G. Korablev
    Proceedings of the Steklov Institute of Mathematics, 2018, 303 : 156 - 165
  • [28] Parity in knot theory
    Manturov, V. O.
    SBORNIK MATHEMATICS, 2010, 201 (05) : 693 - 733
  • [29] Quasoids in Knot Theory
    Korablev, F. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 303 : 156 - 165
  • [30] Categorification of Skew-symmetrizable Cluster Algebras
    Demonet, Laurent
    ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (06) : 1087 - 1162