Knot theory and cluster algebras

被引:5
|
作者
Bazier-Matte, Veronique [1 ]
Schiffler, Ralf [2 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
基金
英国工程与自然科学研究理事会;
关键词
Knot; Cluster algebra; Quiver with potential; Jacobian algebra; Kauffman state; Alexander polynomial; QUIVERS; POTENTIALS;
D O I
10.1016/j.aim.2022.108609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a connection between knot theory and cluster algebras via representation theory. To every knot diagram (or link diagram), we associate a cluster algebra by constructing a quiver with potential. The rank of the cluster algebra is 2n, where n is the number of crossing points in the knot diagram. We then construct 2n indecomposable modules T(i) over the Jacobian algebra of the quiver with potential. For each T(i), we show that the submodule lattice is isomorphic to the corresponding lattice of Kauffman states. We then give a realization of the Alexander polynomial of the knot as a specialization of the F-polynomial of T(i), for every i. Furthermore, we conjecture that the collection of the T(i) forms a cluster in the cluster algebra whose quiver is isomorphic to the opposite of the initial quiver, and that the resulting cluster automorphism is of order two. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 50 条
  • [1] Cluster algebras, invariant theory, and Kronecker coefficients I
    Fei, Jiarui
    ADVANCES IN MATHEMATICS, 2017, 310 : 1064 - 1112
  • [2] Cluster algebras, invariant theory, and Kronecker coefficients II
    Fei, Jiarui
    ADVANCES IN MATHEMATICS, 2019, 341 : 536 - 582
  • [3] Cluster algebras in algebraic lie theory
    Geiss, Ch
    Leclerc, B.
    Schroeer, J.
    TRANSFORMATION GROUPS, 2013, 18 (01) : 149 - 178
  • [4] CLUSTER ALGEBRAS AND CLUSTER CATEGORIES
    Keller, B.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (02) : 187 - 234
  • [5] DONALDSON-THOMAS THEORY AND CLUSTER ALGEBRAS
    Nagao, Kentaro
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (07) : 1313 - 1367
  • [6] Cluster Algebras and Representation Theory
    Leclerc, Bernard
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2471 - 2488
  • [7] Group actions on cluster algebras and cluster categories
    Paquette, Charles
    Schiffler, Ralf
    ADVANCES IN MATHEMATICS, 2019, 345 : 161 - 221
  • [8] Cluster algebras in algebraic lie theory
    Ch. Geiss
    B. Leclerc
    J. Schröer
    Transformation Groups, 2013, 18 : 149 - 178
  • [9] Cluster algebras and semi-invariant rings II: projections
    Fei, Jiarui
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 939 - 966
  • [10] Cluster algebras
    Leclerc, Bernard
    Williams, Lauren K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (27) : 9676 - 9679