Automatic quantitative morphological analysis of interacting galaxies

被引:24
作者
Shamir, Lior [1 ]
Holincheck, Anthony [2 ]
Wallin, John [3 ]
机构
[1] Lawrence Technol Univ, Southfield, MI 48075 USA
[2] George Mason Univ, St Louis, MO USA
[3] Middle Tennessee State Univ, Murfreesboro, TN 37130 USA
基金
美国国家科学基金会;
关键词
Galaxies: structure; Galaxies: evolution; Methods: analytical; Techniques: image processing; STAR-FORMATION; MERGERS; ZOO; DECOMPOSITION; EVOLUTION; DATASETS; 1ST;
D O I
10.1016/j.ascom.2013.09.002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The large number of galaxies imaged by digital sky surveys reinforces the need for computational methods for analyzing galaxy morphology. While the morphology of most galaxies can be associated with a stage on the Hubble sequence, the morphology of galaxy mergers is far more complex due to the combination of two or more galaxies with different morphologies and the interaction between them. Here we propose a computational method based on unsupervised machine learning that can quantitatively analyze morphologies of galaxy mergers and associate galaxies by their morphology. The method works by first generating multiple synthetic galaxy models for each galaxy merger, and then extracting a large set of numerical image content descriptors for each galaxy model. These numbers are weighted using Fisher discriminant scores, and then the similarities between the galaxy mergers are deduced using a variation of Weighted Nearest Neighbor analysis such that the Fisher scores are used as weights. The similarities between the galaxy mergers are visualized using phylogenies to provide a graph that reflects the morphological similarities between the different galaxy mergers, and thus quantitatively profile the morphology of galaxy mergers. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 38 条
  • [1] A new approach to galaxy morphology. I. Analysis of the sloan digital sky survey early data release
    Abraham, RG
    van den Bergh, S
    Nair, P
    [J]. ASTROPHYSICAL JOURNAL, 2003, 588 (01) : 218 - 229
  • [2] [Anonymous], 2012, J. Comput. Cult. Herit., DOI DOI 10.1145/2307723.2307726
  • [3] [Anonymous], 2006, Pattern recognition and machine learning
  • [4] ATLAS OF PECULIAR GALAXIES
    ARP, H
    [J]. ASTROPHYSICAL JOURNAL, 1966, S 14 : 1 - &
  • [5] Robust machine learning applied to astronomical data sets.: III.: Probabilistic photometric redshifts for galaxies and quasars in the SDSS and GALEX
    Ball, Nicholas M.
    Brunner, Robert J.
    Myers, Adam D.
    Strand, Natalie E.
    Alberts, Stacey L.
    Tcheng, David
    [J]. ASTROPHYSICAL JOURNAL, 2008, 683 (01) : 12 - 21
  • [6] Galaxy types in the Sloan Digital Sky Survey using supervised artificial neural networks
    Ball, NM
    Loveday, J
    Fukugita, M
    Nakamura, O
    Okamura, S
    Brinkmann, J
    Brunner, RJ
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 348 (03) : 1038 - 1046
  • [7] Galaxy Zoo: reproducing galaxy morphologies via machine learning☆
    Banerji, Manda
    Lahav, Ofer
    Lintott, Chris J.
    Abdalla, Filipe B.
    Schawinski, Kevin
    Bamford, Steven P.
    Andreescu, Dan
    Murray, Phil
    Raddick, M. Jordan
    Slosar, Anze
    Szalay, Alex
    Thomas, Daniel
    Vandenberg, Jan
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 406 (01) : 342 - 353
  • [8] Breaking the hierarchy of galaxy formation
    Bower, R. G.
    Benson, A. J.
    Malbon, R.
    Helly, J. C.
    Frenk, C. S.
    Baugh, C. M.
    Cole, S.
    Lacey, C. G.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 370 (02) : 645 - 655
  • [9] The role of galaxy interactions and mergers in star formation at z ≤ 1.3:: Mid-infrared properties in the Spitzer First Look Survey
    Bridge, C. R.
    Appleton, P. N.
    Conselice, C. J.
    Choi, P. I.
    Armus, L.
    Fadda, D.
    Laine, S.
    Marleau, F. R.
    Carlberg, R. G.
    Helou, G.
    Yan, L.
    [J]. ASTROPHYSICAL JOURNAL, 2007, 659 (02) : 931 - 940
  • [10] The relationship between stellar light distributions of galaxies and their formation histories
    Conselice, CJ
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 147 (01) : 1 - 28