Longitudinal spin Seebeck effect in various garnet ferrites

被引:101
|
作者
Uchida, K. [1 ,2 ]
Nonaka, T. [1 ]
Kikkawa, T. [1 ]
Kajiwara, Y. [1 ]
Saitoh, E. [1 ,3 ,4 ,5 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[3] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Japan Sci & Technol Agcy, CREST, Tokyo 1020076, Japan
[5] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 10期
关键词
CALORITRONICS; FERROMAGNET; TORQUE;
D O I
10.1103/PhysRevB.87.104412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The longitudinal spin Seebeck effect (LSSE) is investigated in various garnet ferrites Y3-xRxFe5-yMyO12 (R = Gd, Ca; M = Al, Mn, V, In, Zr) by means of the inverse spin Hall effect in Pt films. The magnitude of the LSSE voltage in the Pt/Y3-xRxFe5-yMyO12 samples is found to be enhanced with increasing concentration of Fe in the garnet ferrites, which can be explained by a change in the spin-mixing conductance at the Pt/Y3-xRxFe5-yMyO12 interfaces. We also investigate the dependence of the LSSE voltage on macroscopic magnetic parameters of Y3-xRxFe5-yMyO12. The experimental results show that the LSSE voltage in the Pt/Y3-xRxFe5-yMyO12 samples has a positive correlation with the Curie temperature and the saturation magnetization, but no clear correlation with the gyromagnetic ratio and the Gilbert damping constant of the samples. DOI: 10.1103/PhysRevB.87.104412
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Observation of the spin Seebeck effect in epitaxial Fe3O4 thin films
    Ramos, R.
    Kikkawa, T.
    Uchida, K.
    Adachi, H.
    Lucas, I.
    Aguirre, M. H.
    Algarabel, P.
    Morellon, L.
    Maekawa, S.
    Saitoh, E.
    Ibarra, M. R.
    APPLIED PHYSICS LETTERS, 2013, 102 (07)
  • [22] Thermal spin current and magnetothermopower by Seebeck spin tunneling
    Jansen, R.
    Deac, A. M.
    Saito, H.
    Yuasa, S.
    PHYSICAL REVIEW B, 2012, 85 (09)
  • [23] Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin-valves
    Choi, Gyung-Min
    Moon, Chul-Hyun
    Min, Byoung-Chul
    Lee, Kyung-Jin
    Cahill, David G.
    NATURE PHYSICS, 2015, 11 (07) : 576 - U87
  • [24] Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states
    Jiang, Zilong
    Chang, Cui-Zu
    Masir, Massoud Ramezani
    Tang, Chi
    Xu, Yadong
    Moodera, Jagadeesh S.
    MacDonald, Allan H.
    Shi, Jing
    NATURE COMMUNICATIONS, 2016, 7
  • [25] Spin Seebeck effect in an (In, Ga)As quantum well with equal Rashba and Dresselhaus spin-orbit couplings
    Capps, Jeremy
    Marinescu, D. C.
    Manolescu, Andrei
    PHYSICAL REVIEW B, 2016, 93 (08)
  • [26] Temperature profile of nanospintronic device analyzed by spin-dependent Seebeck effect
    Kamruzzaman, Md
    Hu, Shaojie
    Ohnishi, Kohei
    Kimura, Takashi
    APPLIED PHYSICS EXPRESS, 2021, 14 (07)
  • [27] Bose-Einstein condensation of magnons pumped by the bulk spin Seebeck effect
    Tserkovnyak, Yaroslav
    Bender, Scott A.
    Duine, Rembert A.
    Flebus, Benedetta
    PHYSICAL REVIEW B, 2016, 93 (10)
  • [28] Simultaneous spin pumping and spin Seebeck experiments with thermal control of the magnetic damping in bilayers of yttrium iron garnet and heavy metals: YIG/Pt and YIG/IrMn
    Holanda, J.
    Santos, O. Alves
    Rodriguez-Suarez, R. L.
    Azevedo, A.
    Rezende, S. M.
    PHYSICAL REVIEW B, 2017, 95 (13)
  • [29] Tunnel magneto-Seebeck effect
    Kuschel, T.
    Czerner, M.
    Walowski, J.
    Thomas, A.
    Schumacher, H. W.
    Reiss, G.
    Heiliger, C.
    Muenzenberg, M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (13)
  • [30] Antiferromagnetic spin Seebeck effect across the spin-flop transition: A stochastic Ginzburg-Landau simulation
    Yamamoto, Yutaka
    Ichioka, Masanori
    Adachi, Hiroto
    PHYSICAL REVIEW B, 2022, 105 (10)