Longitudinal spin Seebeck effect in various garnet ferrites

被引:101
|
作者
Uchida, K. [1 ,2 ]
Nonaka, T. [1 ]
Kikkawa, T. [1 ]
Kajiwara, Y. [1 ]
Saitoh, E. [1 ,3 ,4 ,5 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[3] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Japan Sci & Technol Agcy, CREST, Tokyo 1020076, Japan
[5] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 10期
关键词
CALORITRONICS; FERROMAGNET; TORQUE;
D O I
10.1103/PhysRevB.87.104412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The longitudinal spin Seebeck effect (LSSE) is investigated in various garnet ferrites Y3-xRxFe5-yMyO12 (R = Gd, Ca; M = Al, Mn, V, In, Zr) by means of the inverse spin Hall effect in Pt films. The magnitude of the LSSE voltage in the Pt/Y3-xRxFe5-yMyO12 samples is found to be enhanced with increasing concentration of Fe in the garnet ferrites, which can be explained by a change in the spin-mixing conductance at the Pt/Y3-xRxFe5-yMyO12 interfaces. We also investigate the dependence of the LSSE voltage on macroscopic magnetic parameters of Y3-xRxFe5-yMyO12. The experimental results show that the LSSE voltage in the Pt/Y3-xRxFe5-yMyO12 samples has a positive correlation with the Curie temperature and the saturation magnetization, but no clear correlation with the gyromagnetic ratio and the Gilbert damping constant of the samples. DOI: 10.1103/PhysRevB.87.104412
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Longitudinal spin Seebeck effect: from fundamentals to applications
    Uchida, K.
    Ishida, M.
    Kikkawa, T.
    Kirihara, A.
    Murakami, T.
    Saitoh, E.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (34)
  • [2] Magnon spin-current theory for the longitudinal spin-Seebeck effect
    Rezende, S. M.
    Rodriguez-Suarez, R. L.
    Cunha, R. O.
    Rodrigues, A. R.
    Machado, F. L. A.
    Fonseca Guerra, G. A.
    Lopez Ortiz, J. C.
    Azevedo, A.
    PHYSICAL REVIEW B, 2014, 89 (01):
  • [3] Effect of the magnon dispersion on the longitudinal spin Seebeck effect in yttrium iron garnets
    Jin, Hyungyu
    Boona, Stephen R.
    Yang, Zihao
    Myers, Roberto C.
    Heremans, Joseph P.
    PHYSICAL REVIEW B, 2015, 92 (05):
  • [4] Damping of parametrically excited magnons in the presence of the longitudinal spin Seebeck effect
    Langner, Thomas
    Kirihara, Akihiro
    Serga, Alexander A.
    Hillebrands, Burkard
    Vasyuchka, Vitaliy I.
    PHYSICAL REVIEW B, 2017, 95 (13)
  • [5] Longitudinal spin Seebeck effect in permalloy separated from the anomalous Nernst effect: Theory and experiment
    Holanda, J.
    Alves Santos, O.
    Cunha, R. O.
    Mendes, J. B. S.
    Rodriguez-Suarez, R. L.
    Azevedo, A.
    Rezende, S. M.
    PHYSICAL REVIEW B, 2017, 95 (21)
  • [6] Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect
    Agrawal, M.
    Vasyuchka, V. I.
    Serga, A. A.
    Kirihara, A.
    Pirro, P.
    Langner, T.
    Jungfleisch, M. B.
    Chumak, A. V.
    Papaioannou, E. Th.
    Hillebrands, B.
    PHYSICAL REVIEW B, 2014, 89 (22):
  • [7] Spin Seebeck effect in antiferromagnets and compensated ferrimagnets
    Ohnuma, Yuichi
    Adachi, Hiroto
    Saitoh, Eiji
    Maekawa, Sadamichi
    PHYSICAL REVIEW B, 2013, 87 (01):
  • [8] Magnetic field control of the spin Seebeck effect
    Ritzmann, Ulrike
    Hinzke, Denise
    Kehlberger, Andreas
    Guo, Er-Jia
    Klaeui, Mathias
    Nowak, Ulrich
    PHYSICAL REVIEW B, 2015, 92 (17):
  • [9] Distinguishing antiferromagnetic spin sublattices via the spin Seebeck effect
    Luo, Yongming
    Liu, Changjiang
    Saglam, Hilal
    Li, Yi
    Zhang, Wei
    Zhang, Steven S-L
    Pearson, John E.
    Fisher, Brandon
    Zhou, Tiejun
    Bhattacharya, Anand
    Hoffmann, Axel
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [10] Spin Seebeck effect of correlated magnetic molecules
    Manaparambil, Anand
    Weymann, Ireneusz
    SCIENTIFIC REPORTS, 2021, 11 (01)