Composite Vertical Structure of Vertical Velocity in Nonprecipitating Cumulus Clouds

被引:15
作者
Wang, Yonggang [1 ]
Geerts, Bart [1 ]
机构
[1] Univ Wyoming, Laramie, WY 82071 USA
基金
美国国家科学基金会;
关键词
PART I; ENVIRONMENT INTERFACE; DOPPLER RADAR; LIFE-CYCLE; ENTRAINMENT; CONVECTION; PARAMETERIZATION; DYNAMICS; THERMALS; PRECIPITATION;
D O I
10.1175/MWR-D-12-00047.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Vertical transects of Doppler vertical velocity data, obtained from an airborne profiling millimeter-wave cloud radar, are composited for a large number of cumulus clouds (Cu) at various stages of their life cycle, to examine typical circulations patterns. The Cu clouds range in depth between similar to 500 and 6000 m and are generally nonprecipitating. They were sampled on board the University of Wyoming King Air over a mountain in southern Arizona during the summer monsoon, and over the high plains of southeastern Wyoming. The composite analysis shows clear evidence of an updraft/downdraft dipole in the upper cloud half, consistent with a horizontal vortex ring. A single cloud-scale toroidal circulation emerges notwithstanding the complex finescale structure with multiple vortices, commonly evident in individual transects of Cu clouds. The stratification of all Cu samples as a function of their buoyancy and mean vertical velocity shows that the vortex ring pattern tends to be more pronounced in positively buoyant Cu with rising motion (presumably young clouds) than in negatively buoyant and/or sinking Cu near the end of their life cycle. Yet no reverse vortex ring is observed in the latter Cu, suggesting that the decaying phase is short lived in these dry environments. The vortex-ring circulation pattern is more intense in the shallower Cu, which are also more buoyant and have a liquid water content closer to adiabatic values. Wind shear tends to tilt Cu clouds and their vortex ring, resulting in a broadening of the upshear updraft and downshear downdraft.
引用
收藏
页码:1673 / 1692
页数:20
相关论文
共 84 条
[1]   SURFACE-BASED REMOTE-SENSING OF THE OBSERVED AND THE ADIABATIC LIQUID WATER-CONTENT OF STRATOCUMULUS CLOUDS [J].
ALBRECHT, BA ;
FAIRALL, CW ;
THOMSON, DW ;
WHITE, AB ;
SNIDER, JB ;
SCHUBERT, WH .
GEOPHYSICAL RESEARCH LETTERS, 1990, 17 (01) :89-92
[2]  
[Anonymous], 1998, Microphysics of clouds and precipitation
[3]   A study of thermals in cumulus clouds [J].
Blyth, AM ;
Lasher-Trapp, SG ;
Cooper, WA .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (607) :1171-1190
[4]  
BLYTH AM, 1988, J ATMOS SCI, V45, P3944, DOI 10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO
[5]  
2
[6]  
BLYTH AM, 1993, J APPL METEOROL, V32, P626, DOI 10.1175/1520-0450(1993)032<0626:EICC>2.0.CO
[7]  
2
[8]  
BRENGUIER JL, 1994, J ATMOS OCEAN TECH, V11, P1409, DOI 10.1175/1520-0426(1994)011<1409:ARADOP>2.0.CO
[9]  
2
[10]  
Bretherton CS, 2004, MON WEATHER REV, V132, P864, DOI 10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO