Inverse of the distance matrix of a cycle-clique graph

被引:14
|
作者
Hou, Yaoping [1 ,2 ]
Fang, Aixiang [1 ]
Sun, Yajing [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha, Hunan, Peoples R China
[2] Hunan First Normal Univ, Dept Math, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Distance matrix; Cycle; Clique; Inverse matrix; TREE;
D O I
10.1016/j.laa.2015.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A connected graph G, all of whose blocks are cycles or cliques, is called a cycle clique graph. Let D be the distance matrix of G. By a theorem of Graham et al., we have det(D) not equal 0 if all cycle blocks have odd vertices. In this paper we give the formula for the inverse of D. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 50 条
  • [1] An inverse formula for the distance matrix of a fan graph
    Hao, Chan
    Li, Shuchao
    Zhang, Licheng
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22) : 7807 - 7824
  • [2] The inverse of the distance matrix of a distance well-defined graph
    Zhou, Hui
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 517 : 11 - 29
  • [3] Inverse of the distance matrix of a block graph
    Bapat, R. B.
    Sivasubramanian, Sivaramakrishnan
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (12) : 1393 - 1397
  • [4] Inverse of the distance matrix of a bi-block graph
    Hou, Yaoping
    Sun, Yajing
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (08) : 1509 - 1517
  • [5] Distance matrix of a multi-block graph: determinant and inverse
    Das, Joyentanuj
    Mohanty, Sumit
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19) : 3994 - 4022
  • [6] THE MOORE-PENROSE INVERSE OF THE DISTANCE MATRIX OF A HELM GRAPH
    Jeyaraman, I.
    Divyadevi, T.
    Azhagendran, R.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 94 - 109
  • [7] Inverse of the distance matrix of a cactoid digraph
    Hou, Yaoping
    Chen, Jing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 1 - 10
  • [8] Squared distance matrix of a tree: Inverse and inertia
    Bapat, R. B.
    Sivasubramanian, Sivaramakrishnan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 491 : 328 - 342
  • [9] Novel Graph Distance Matrix
    Randic, Milan
    Pisanski, Tomaz
    Novic, Marjana
    Plavsic, Dejan
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (09) : 1832 - 1841
  • [10] On Pareto eigenvalue of distance matrix of a graph
    Deepak Sarma
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 1021 - 1037