Reversible Acetylation Regulates Salt-inducible Kinase (SIK2) and Its Function in Autophagy

被引:38
|
作者
Yang, Fu-Chia [1 ,2 ,5 ]
Tan, Bertrand Chin-Ming [4 ]
Chen, Wei-Hao [1 ]
Lin, Ya-Huei [1 ]
Huang, Jing-Yi [1 ]
Chang, Hsin-Yun [1 ]
Sun, Hui-Yu [1 ]
Hsu, Pang-Hung [6 ]
Liou, Gunn-Guang [10 ]
Shen, James [7 ]
Chang, Ching-Jin [2 ,8 ]
Han, Chau-Chung [9 ]
Tsai, Ming-Daw [6 ,8 ]
Lee, Sheng-Chung [1 ,3 ,8 ]
机构
[1] Natl Taiwan Univ, Inst Mol Med, Taipei 100, Taiwan
[2] Natl Taiwan Univ, Inst Biochem Sci, Taipei 100, Taiwan
[3] Natl Taiwan Univ, Inst Clin Med, Taipei 100, Taiwan
[4] Chang Gung Univ, Dept Biomed Sci, Tao Yuan 33302, Taiwan
[5] Acad Sinica, Inst Biol Chem, Taiwan Int Grad Program, Chem Biol & Mol Biophys Program, Taipei 11529, Taiwan
[6] Acad Sinica, Genom Res Ctr, Taipei 11529, Taiwan
[7] Acad Sinica, Inst Mol Biol, Taipei 11529, Taiwan
[8] Acad Sinica, Inst Biol Chem, Taipei 11529, Taiwan
[9] Acad Sinica, Inst Mol & Atom Sci, Taipei 11529, Taiwan
[10] Natl Hlth Res Inst, Div Mol & Genom Med, Miaoli 35053, Taiwan
关键词
PHOSPHORYLATION; EXPRESSION; TDP-43; POLYGLUTAMINE; INVOLVEMENT; INHIBITION; EXPANSIONS; DISEASE; CAMP;
D O I
10.1074/jbc.M112.431239
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salt-inducible kinase 2 (SIK2) is a serine/threonine protein kinase belonging to the AMP-activated protein kinase (AMPK) family. SIK2 has been shown to function in the insulin-signaling pathway during adipocyte differentiation and to modulate CREB-mediated gene expression in response to hormones and nutrients. However, molecular mechanisms underlying the regulation of SIK2 kinase activity remains largely elusive. Here we report a dynamic, post-translational regulation of its kinase activity that is coordinated by an acetylation-deaceytlation switch, p300/CBP-mediated Lys-53 acetylation inhibits SIK2 kinase activity, whereas HDAC6-mediated deacetylation restores the activity. Interestingly, overexpression of acetylation-mimetic mutant of SIK2 (SIK2-K53Q), but not the nonacetylatable K53R variant, resulted in accumulation of autophagosomes. Further consistent with a role in autophagy, knockdown of SIK2 abrogated autophagosome and lysosome fusion. Consequently, SIK2 and its kinase activity are indispensable for the removal of TDP-43 Delta inclusion bodies. Our findings uncover SIK2 as a critical determinant in autophagy progression and further suggest a mechanism in which the interplay among kinase and deacetylase activities contributes to cellular protein pool homeostasis.
引用
收藏
页码:6227 / 6237
页数:11
相关论文
共 50 条
  • [41] Salt-inducible kinase 1 regulates E-cadherin expression and intercellular junction stability
    Eneling, Kristina
    Brion, Laura
    Pinto, Vanda
    Pinho, Maria J.
    Sznajder, Jacob I.
    Mochizuki, Naoki
    Emoto, Kazuo
    Soares-da-Silva, Patricio
    Bertorello, Alejandro M.
    FASEB JOURNAL, 2012, 26 (08): : 3230 - 3239
  • [42] SIK (salt-inducible kinase): Regulation of ACTH-mediated steroidogenic gene expression and nuclear/cytosol re-distribution
    Lin, XZ
    Takemori, H
    Doi, J
    Katoh, Y
    Okamoto, M
    ENDOCRINE RESEARCH, 2000, 26 (04) : 995 - 1002
  • [43] Increased Arterial Blood Pressure and Vascular Fibrosis/remodeling in Mice Lacking Salt-inducible Kinase 1 (sik1)
    Brion, Laura
    Pires, Nuno
    Igreja, Bruno
    Pinho, Maria Joco
    Wagsater, Dick
    Wikstrom, Johannes
    Behrendt, Margareta
    Hamsten, Anders
    Eriksson, Per
    Soares-da-Silva, Patricio
    Bertorello, Alejandro M.
    CIRCULATION, 2013, 128 (22)
  • [44] Drosophila Salt-inducible Kinase (SIK) Regulates Starvation Resistance through cAMP-response Element-binding Protein (CREB)-regulated Transcription Coactivator (CRTC)
    Choi, Sekyu
    Kim, Wonho
    Chung, Jongkyeong
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (04) : 2658 - 2664
  • [45] Salt-Inducible Kinase 2 is a promising therapeutic target in patients with ulcerative colitis
    McMillan, L.
    Felwick, R.
    Barbeta, G.
    Fenton-May, A.
    Kelly, M.
    Strickland, M.
    Richmond, N.
    Bennett, N.
    Makrecka-Kuka, M.
    Sanchez-Elsner, T.
    Cummings, F.
    Madden, J.
    Kilty, I.
    JOURNAL OF CROHNS & COLITIS, 2024, 18 : I418 - I418
  • [46] Salt-inducible kinase 1 is present in lung alveolar epithelial cells and regulates active sodium transport
    Eneling, Kristina
    Chen, Jiwang
    Welch, Lynn C.
    Takemori, Hiroshi
    Sznajder, Jacob I.
    Bertorello, Alejandro M.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2011, 409 (01) : 28 - 33
  • [47] Salt-inducible kinase 1 regulates bone metabolism by affecting proliferation of osteoblast precursors and differentiation of osteoblasts
    Kim, Min Kyung
    Kim, Hong-Hee
    JOURNAL OF BONE AND MINERAL RESEARCH, 2018, 33 : 252 - 252
  • [48] Optimization of Selectivity and Pharmacokinetic Properties of Salt-Inducible Kinase Inhibitors that Led to the Discovery of Pan-SIK Inhibitor GLPG3312
    Temal-Laib, Taoues
    Peixoto, Christophe
    Desroy, Nicolas
    De Lemos, Elsa
    Bonnaterre, Florence
    Bienvenu, Natacha
    Picolet, Olivier
    Sartori, Eric
    Bucher, Denis
    Lopez-Ramos, Miriam
    Magadan, Carlos Roca
    Laenen, Wendy
    Flower, Thomas
    Mollat, Patrick
    Bugaud, Olivier
    Touitou, Robert
    Fernandes, Anna Pereira
    Lavazais, Stephanie
    Monjardet, Alain
    Borgonovi, Monica
    Gosmini, Romain
    Brys, Reginald
    Amantini, David
    De Vos, Steve
    Andrews, Martin
    JOURNAL OF MEDICINAL CHEMISTRY, 2023, 67 (01) : 380 - 401
  • [49] Dopamine β-Hydroxylase Inhibitor Etamicastat Prevents High Blood Pressure in Mice Lacking Salt-Inducible Kinase 1 (SIK1)
    Pires, Nuno
    Igreja, Bruno
    Moura, Eduardo
    Bonifacio, Maria Joao
    Serrao, Paula
    Soares-da-Silva, Patricio
    FASEB JOURNAL, 2016, 30
  • [50] Salt-Inducible Kinase 1 (SIK1) is Induced by Alcohol and Suppresses Microglia Inflammation via NF-κB Signaling
    Zhang, Yu
    Gao, Weida
    Yang, Kongbin
    Tao, Haiquan
    Yang, Haicheng
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 47 (04) : 1411 - 1421