Reversible Acetylation Regulates Salt-inducible Kinase (SIK2) and Its Function in Autophagy

被引:38
|
作者
Yang, Fu-Chia [1 ,2 ,5 ]
Tan, Bertrand Chin-Ming [4 ]
Chen, Wei-Hao [1 ]
Lin, Ya-Huei [1 ]
Huang, Jing-Yi [1 ]
Chang, Hsin-Yun [1 ]
Sun, Hui-Yu [1 ]
Hsu, Pang-Hung [6 ]
Liou, Gunn-Guang [10 ]
Shen, James [7 ]
Chang, Ching-Jin [2 ,8 ]
Han, Chau-Chung [9 ]
Tsai, Ming-Daw [6 ,8 ]
Lee, Sheng-Chung [1 ,3 ,8 ]
机构
[1] Natl Taiwan Univ, Inst Mol Med, Taipei 100, Taiwan
[2] Natl Taiwan Univ, Inst Biochem Sci, Taipei 100, Taiwan
[3] Natl Taiwan Univ, Inst Clin Med, Taipei 100, Taiwan
[4] Chang Gung Univ, Dept Biomed Sci, Tao Yuan 33302, Taiwan
[5] Acad Sinica, Inst Biol Chem, Taiwan Int Grad Program, Chem Biol & Mol Biophys Program, Taipei 11529, Taiwan
[6] Acad Sinica, Genom Res Ctr, Taipei 11529, Taiwan
[7] Acad Sinica, Inst Mol Biol, Taipei 11529, Taiwan
[8] Acad Sinica, Inst Biol Chem, Taipei 11529, Taiwan
[9] Acad Sinica, Inst Mol & Atom Sci, Taipei 11529, Taiwan
[10] Natl Hlth Res Inst, Div Mol & Genom Med, Miaoli 35053, Taiwan
关键词
PHOSPHORYLATION; EXPRESSION; TDP-43; POLYGLUTAMINE; INVOLVEMENT; INHIBITION; EXPANSIONS; DISEASE; CAMP;
D O I
10.1074/jbc.M112.431239
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salt-inducible kinase 2 (SIK2) is a serine/threonine protein kinase belonging to the AMP-activated protein kinase (AMPK) family. SIK2 has been shown to function in the insulin-signaling pathway during adipocyte differentiation and to modulate CREB-mediated gene expression in response to hormones and nutrients. However, molecular mechanisms underlying the regulation of SIK2 kinase activity remains largely elusive. Here we report a dynamic, post-translational regulation of its kinase activity that is coordinated by an acetylation-deaceytlation switch, p300/CBP-mediated Lys-53 acetylation inhibits SIK2 kinase activity, whereas HDAC6-mediated deacetylation restores the activity. Interestingly, overexpression of acetylation-mimetic mutant of SIK2 (SIK2-K53Q), but not the nonacetylatable K53R variant, resulted in accumulation of autophagosomes. Further consistent with a role in autophagy, knockdown of SIK2 abrogated autophagosome and lysosome fusion. Consequently, SIK2 and its kinase activity are indispensable for the removal of TDP-43 Delta inclusion bodies. Our findings uncover SIK2 as a critical determinant in autophagy progression and further suggest a mechanism in which the interplay among kinase and deacetylase activities contributes to cellular protein pool homeostasis.
引用
收藏
页码:6227 / 6237
页数:11
相关论文
共 50 条
  • [21] Roles of several domains identified in the primary structure of salt-inducible kinase (SIK)
    Horike, N
    Takemori, H
    Katoh, Y
    Doi, J
    Okamoto, M
    ENDOCRINE RESEARCH, 2002, 28 (04) : 291 - 294
  • [22] Structure-based drug design and synthesis of salt-inducible kinase 2 (SIK 2) inhibitors
    Sun, Duoli
    Maxwell, David S.
    Peng, Zhenghong
    Ahmed, Ahmed A.
    Redondo, Clara
    Bast, Robert C.
    Bornmann, William G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [23] Interaction between Salt-inducible Kinase 2 (SIK2) and p97/Valosin-containing Protein (VCP) Regulates Endoplasmic Reticulum (ER)-associated Protein Degradation in Mammalian Cells
    Yang, Fu-Chia
    Lin, Ya-Huei
    Chen, Wei-Hao
    Huang, Jing-Yi
    Chang, Hsin-Yun
    Su, Su-Hui
    Wang, Hsiao-Ting
    Chiang, Chun-Yi
    Hsu, Pang-Hung
    Tsai, Ming-Daw
    Tan, Bertrand Chin-Ming
    Lee, Sheng-Chung
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (47) : 33861 - 33872
  • [24] Hormonal regulation of the Salt-inducible Kinase (SIK), a key mediator that controls hepatic gluconeogenesis
    Patel, K.
    Goransson, O.
    Sutherland, C.
    Sakamoto, K.
    DIABETIC MEDICINE, 2013, 30 : E2 - E2
  • [25] Salt-Inducible Kinase 2 Regulates Mitotic Progression and Transcription in Prostate Cancer
    Bon, Helene
    Wadhwa, Karan
    Schreiner, Alexander
    Osborne, Michelle
    Carroll, Thomas
    Ramos-Montoya, Antonio
    Ross-Adams, Helen
    Visser, Matthieu
    Hoffmann, Ralf
    Ahmed, Ahmed Ashour
    Neal, David E.
    Mills, Ian G.
    MOLECULAR CANCER RESEARCH, 2015, 13 (04) : 620 - 635
  • [26] Salt-inducible kinase 3, SIK3, is a new gene associated with hearing
    Wolber, Lisa E.
    Girotto, Giorgia
    Buniello, Annalisa
    Vuckovic, Dragana
    Pirastu, Nicola
    Lorente-Canovas, Beatriz
    Rudan, Igor
    Hayward, Caroline
    Polasek, Ozren
    Ciullo, Marina
    Mangino, Massimo
    Steves, Claire
    Concas, Maria Pina
    Cocca, Massilimiliano
    Spector, Tim D.
    Gasparini, Paolo
    Steel, Karen P.
    Williams, Frances M. K.
    HUMAN MOLECULAR GENETICS, 2014, 23 (23) : 6407 - 6418
  • [27] Salt-inducible kinase 2 regulates TFEB and is required for autophagic flux in adipocytes
    Negoita, Florentina
    Sall, Johanna
    Moren, Bjorn
    Stenkula, Karin
    Goransson, Olga
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 508 (03) : 775 - 779
  • [28] Down-regulation of salt-inducible kinase 1 (SIK1) is mediated by RNF2 in hepatocarcinogenesis
    Qu, Chao
    Qu, Yaqin
    ONCOTARGET, 2017, 8 (02) : 3144 - 3155
  • [29] Salt-inducible kinase 2 regulates fibrosis during bleomycin- induced lung injury
    van Gijsel-Bonnello, Manuel
    Darling, Nicola J.
    Tanaka, Takashi
    Di Carmine, Samuele
    Marchesi, Francesco
    Thomson, Sarah
    Clark, Kristopher
    Kurowska-Stolarska, Mariola
    McSorley, Henry J.
    Cohen, Philip
    Arthur, J. Simon C.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (12)
  • [30] Development of Chemical Probes for Investigation of Salt-Inducible Kinase Function in Vivo
    Sundberg, Thomas B.
    Liang, Yanke
    Wu, Huixian
    Choi, Hwan Geun
    Kim, Nam Doo
    Sim, Taebo
    Johannessen, Liv
    Petrone, Adam
    Khor, Bernard
    Graham, Daniel B.
    Latorre, Isabel J.
    Phillips, Andrew J.
    Schreiber, Stuart L.
    Perez, Jose
    Shamji, Alykhan F.
    Gray, Nathanael S.
    Xavier, Ramnik J.
    ACS CHEMICAL BIOLOGY, 2016, 11 (08) : 2105 - 2111