ON THE TWO-STEP ITERATIVE METHOD OF SOLVING FRICTIONAL CONTACT PROBLEMS IN ELASTICITY

被引:0
作者
Angelov, Todor A. [1 ]
Liolios, Asterios A. [2 ]
机构
[1] Bulgarian Acad Sci, Inst Mech, Acad G Bonchev St,Block 4, BU-1113 Sofia, Bulgaria
[2] Democritus Univ Thrace, Dept Civil Engn, Xanti 67100, Greece
关键词
contact problems with friction; iterative methods;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 18 条
[1]   A review of the theory of static and quasi-static frictional contact problems in elasticity [J].
Andersson, LE ;
Klarbring, A .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1789) :2519-2539
[2]   An iterative solution procedure for Winkler-type contact problems with friction [J].
Angelov, TA ;
Liolios, AA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (02) :136-143
[3]   INTERNAL APPROXIMATION OF QUASI-VARIATIONAL INEQUALITIES [J].
CAPATINA, AR ;
COCU, M .
NUMERISCHE MATHEMATIK, 1991, 59 (04) :385-398
[5]   ON SOME EXISTENCE AND UNIQUENESS RESULTS IN CONTACT PROBLEMS WITH NONLOCAL FRICTION [J].
DEMKOWICZ, L ;
ODEN, JT .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1075-1093
[6]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5
[7]  
Glowinski R, 1984, NUMERICAL METHODS NO
[8]  
Hlavacek I., 1988, Solution of Variational Inequalities in Mechanics
[9]  
Kikuchi N., 1988, CONTACT PROBLEMS ELA
[10]   ON FRICTION PROBLEMS WITH NORMAL COMPLIANCE [J].
KLARBRING, A ;
MIKELIC, A ;
SHILLOR, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :935-955