THE INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS AND THE STABILIZATION OF CONTROLLED LAGRANGIAN SYSTEMS

被引:3
作者
Farre Puiggali, M. [1 ]
Mestdag, T. [2 ,3 ]
机构
[1] UCM, UC3M, UAM, CSIC,Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[2] Univ Antwerp, Dept Math & Comp Sci, Middelheimlaan 1, B-2020 Antwerp, Belgium
[3] Univ Ghent, Dept Math, Krijgslaan 281, B-9000 Ghent, Belgium
关键词
controlled Lagrangians; inverse problem; stability; Lyapunov function; GENERALIZED HELMHOLTZ CONDITIONS;
D O I
10.1137/16M1060091
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We apply methods of the so-called "inverse problem of the calculus of variations" to the stabilization of an equilibrium of a class of two-dimensional controlled mechanical systems. The class is general enough to include, among others, the inverted pendulum on a cart and the inertia wheel pendulum. By making use of a condition that follows from Douglas' classification, we derive feedback controls for which the control system is variational. We then use the energy of a suitable controlled Lagrangian to provide a stability criterion for the equilibrium.
引用
收藏
页码:3297 / 3318
页数:22
相关论文
共 20 条
[1]   Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping [J].
Bloch, AM ;
Chang, DE ;
Leonard, NE ;
Marsden, JE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (10) :1556-1571
[2]   Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem [J].
Bloch, AM ;
Leonard, NE ;
Marsden, JE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (12) :2253-2270
[3]   The Helmholtz Conditions and the Method of Controlled Lagrangians [J].
Bloch, Anthony M. ;
Krupka, Demeter ;
Zenkov, Dmitry V. .
INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS: LOCAL AND GLOBAL THEORY, 2015, :1-29
[4]   Generalized Helmholtz Conditions for Non-Conservative Lagrangian Systems [J].
Bucataru, Ioan ;
Constantinescu, Oana .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2015, 18 (01)
[5]   Stabilizability of Controlled Lagrangian Systems of Two Degrees of Freedom and One Degree of Under-Actuation by the Energy-Shaping Method [J].
Chang, Dong Eui .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (08) :1888-1893
[6]   The inverse problem of the calculus of variations: Separable systems [J].
Crampin, M ;
Prince, GE ;
Sarlet, W ;
Thompson, G .
ACTA APPLICANDAE MATHEMATICAE, 1999, 57 (03) :239-254
[7]   TOWARDS A GEOMETRICAL UNDERSTANDING OF DOUGLAS SOLUTION OF THE INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS [J].
CRAMPIN, M ;
SARLET, W ;
MARTINEZ, E ;
BYRNES, GB ;
PRINCE, GE .
INVERSE PROBLEMS, 1994, 10 (02) :245-260
[8]   On the generalized Helmholtz conditions for Lagrangian systems with dissipative forces [J].
Crampin, Mike ;
Mestdag, Tom ;
Sarlet, Willy .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (06) :502-508
[9]   Solution of the inverse problem of the calculus of variations [J].
Douglas, Jesse .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 50 (1-3) :71-128
[10]   LYAPUNOV CONSTRAINTS AND GLOBAL ASYMPTOTIC STABILIZATION [J].
Grillo, Sergio ;
Marsden, Jerrold ;
Nair, Sujit .
JOURNAL OF GEOMETRIC MECHANICS, 2011, 3 (02) :145-196