Microscale electrodialysis: Concentration profiling and vortex visualization

被引:166
作者
Kwak, Rhokyun [1 ]
Guan, Guofeng [2 ]
Peng, Weng Kung [2 ]
Han, Jongyoon [2 ,3 ,4 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Singapore MIT Alliance Res & Technol SMART Ctr, BioSyst & Micromech BioSyM IRG, Singapore 117543, Singapore
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Electrodialysis (ED); Desalination; Limiting and overlimiting current; Concentration polarization; Ion exchange membrane; SOLUTION INTERFACE; ION; DESALINATION; ELECTROLYTES; RHODAMINE-6G;
D O I
10.1016/j.desal.2012.07.017
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, the microscale experimental model system for studying electrodialysis (ED) process is described, which is used for visualizing in situ fluid flow and concentration profile over a wide range of applied voltages (0-100 V). On the transparent silicone rubber, polydimethylsiloxane (PDMS), microscale channels (width similar to 1 mm, height similar to 200 mu m) were fabricated between ion exchange membranes, while allowing microscopic visualization of fluid flow and concentration changes within the ED unit cell. This ED platform was then operated on the commercial microscope with 10 mM NaCl solution. Cationic fluorescence dyes (Rhodamine 6G) were added for flow and salt concentration tracer. Concentration and fluid flow profiles within the ED cell exhibit distinct behaviors in Ohmic, limiting, and overliming regimes, respectively. Although such dynamic behaviors have been predicted previously, to the best of our knowledge, this is the first time that they were clearly visualized in a realistic ED model. Based on visualized fluid flows and concentration profiles, one can elucidate many important factors that affect ion transport (salt removal) efficiency, such as the expansion of boundary layer and vortex instability. This model system would be instrumental to test and optimize ED system parameters, and can be applicable to the study of other desalination processes such as capacitance deionization. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 40 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   AGGREGATE FORMATION OF RHODAMINE-6G IN AQUEOUS-SOLUTION [J].
ARBELOA, FL ;
GONZALEZ, IL ;
OJEDA, PR ;
ARBELOA, IL .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1982, 78 :989-994
[3]   Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer [J].
Belova, Elena I. ;
Lopatkova, Galina Yu. ;
Pismenskaya, Natalia D. ;
Nikonenko, Victor V. ;
Larchet, Christian ;
Pourcelly, Gerald .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (27) :13458-13469
[4]   Imaging and Quantification of Isotachophoresis Zones Using Nonfocusing Fluorescent Tracers [J].
Chambers, Robert D. ;
Santiago, Juan G. .
ANALYTICAL CHEMISTRY, 2009, 81 (08) :3022-3028
[5]   Fluorescence spectral properties of rhodamine 6G at the silica/water interface [J].
Chen, Zhe ;
Tang, Yao-Ji ;
Xie, Tang-Tang ;
Chen, Ying ;
Li, Yao-Qun .
JOURNAL OF FLUORESCENCE, 2008, 18 (01) :93-100
[6]   Effects of electrolytes on the transport phenomena in a cation-exchange membrane [J].
Choi, JH ;
Lee, HJ ;
Moon, SH .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 238 (01) :188-195
[7]  
Donnan FG, 1911, Z ELKTROCHEM ANGEW P, V17, P572
[8]   Overlimiting Current in a Microchannel [J].
Dydek, E. Victoria ;
Zaltzman, Boris ;
Rubinstein, Isaak ;
Deng, D. S. ;
Mani, Ali ;
Bazant, Martin Z. .
PHYSICAL REVIEW LETTERS, 2011, 107 (11)
[9]   Electrodialysis: From an idea to realization [J].
Grebenyuk, VD ;
Grebenyuk, OV .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2002, 38 (08) :806-809
[10]   Nanostructured materials for water desalination [J].
Humplik, T. ;
Lee, J. ;
O'Hern, S. C. ;
Fellman, B. A. ;
Baig, M. A. ;
Hassan, S. F. ;
Atieh, M. A. ;
Rahman, F. ;
Laoui, T. ;
Karnik, R. ;
Wang, E. N. .
NANOTECHNOLOGY, 2011, 22 (29)