Simulation and analysis of lead-free perovskite solar cells incorporating cerium oxide as electron transporting layer

被引:82
作者
Al-Mousoi, Ali K. [1 ]
Mohammed, Mustafa K. A. [2 ]
Pandey, Rahul [3 ]
Madan, Jaya [3 ]
Dastan, Davoud [4 ]
Ravi, G. [5 ]
Sakthivel, P. [5 ]
Anandha Babu, G. [6 ]
机构
[1] Al Farahidi Univ, Coll Med Tech, Dept Radiol & Ultrasonog Tech, Baghdad 10011, Iraq
[2] Al Mustaqbal Univ Coll, Radiol Tech Dept, Hillah 51001, Babylon, Iraq
[3] Chitkara Univ, Chitkara Univ Inst Engn & Technol, VLSI Ctr Excellence, Rajpura 140417, Punjab, India
[4] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14850 USA
[5] Alagappa Univ, Dept Phys, Karaikkudi 630003, Tamil Nadu, India
[6] Bannari Amman Inst Technol, Dept Phys, Sathyamangalam, Tamil Nadu, India
关键词
HALIDE PEROVSKITES; EFFICIENT; PERFORMANCE; TRANSITION; DESIGN; ENERGY;
D O I
10.1039/d2ra05957f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The great demand for renewable energy has greatly contributed to the development of the solar cell industry. Recently, silicon solar cells have dominated the world market. The ease of processing gives perovskite solar cells (PSCs) an advantage over conventional silicon solar cells. Regular silicon photovoltaics require expensive, multi-step processes accomplished in a specialized ultraclean-chamber facility at an elevated temperature (>1000 degrees C) and highly vacuumed workspace. Hence, researchers and the solar cell industry have focused on PSC as a great rival to silicon solar cells. Despite this, the highest efficiency was obtained from lead-based PSC, which has a considerably high toxicity issue and low stability related to lead content, so the research field pays attention to lead-free perovskite solar cells. In this digital simulation, tin-based perovskite in this paper, methylammonium tin iodide (MASnI(3)) with the use of cerium oxide (CeOx) as an electron transporting layer (ETL) with varying percentages of oxygen, which means different shallow donor densities (ND). The optimum value for the thickness of the absorber layer (perovskite) was made, and the current-voltage characteristics and efficiency calculations were also accomplished for the best cell. Then an improvement was made by changing the ND value of CeOx, and the best-optimized cell parameters were: open circuit voltage (V-OC) of 0.92 V, short circuit current density (J(SC)) of 30.79 mA cm(-2), power conversion efficiency (PCE) of 17.77%, and fill factor (FF) of 62.86%.
引用
收藏
页码:32365 / 32373
页数:9
相关论文
共 50 条
[1]   Long-term stable and hysteresis-free planar perovskite solar cells using green antisolvent strategy [J].
Ahmed, Duha S. ;
Mohammed, Ban K. ;
Mohammed, Mustafa K. A. .
JOURNAL OF MATERIALS SCIENCE, 2021, 56 (27) :15205-15214
[2]   Performance analysis of lead-free CsBi3I10-based perovskite solar cell through the numerical calculation [J].
Ahmmed, Shamim ;
Karim, Md Abdul ;
Rahman, Md Hafijur ;
Aktar, Asma ;
Islam, Md Rasidul ;
Islam, Ashraful ;
Ismail, Abu Bakar Md .
SOLAR ENERGY, 2021, 226 :54-63
[3]  
Al-Mousoi A, 2020, IOP conference series: materials science and engineering
[4]   Engineered surface properties of MAPI using different antisolvents for hole transport layer-free perovskite solar cell (HTL-free PSC) [J].
Al-Mousoi, Ali K. ;
Mohammed, Mustafa K. A. .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2020, 96 (03) :659-668
[5]   Perovskite-organic tandem solar cells with indium oxide interconnect [J].
Brinkmann, K. O. ;
Becker, T. ;
Zimmermann, F. ;
Kreusel, C. ;
Gahlmann, T. ;
Theisen, M. ;
Haeger, T. ;
Olthof, S. ;
Tueckmantel, C. ;
Guenster, M. ;
Maschwitz, T. ;
Goebelsmann, F. ;
Koch, C. ;
Hertel, D. ;
Caprioglio, P. ;
Pena-Camargo, F. ;
Perdigon-Toro, L. ;
Al-Ashouri, A. ;
Merten, L. ;
Hinderhofer, A. ;
Gomell, L. ;
Zhang, S. ;
Schreiber, F. ;
Albrecht, S. ;
Meerholz, K. ;
Neher, D. ;
Stolterfoht, M. ;
Riedl, T. .
NATURE, 2022, 604 (7905) :280-+
[6]   Recent progress in tin-based perovskite solar cells [J].
Cao, Jiupeng ;
Yan, Feng .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (03) :1286-1325
[7]   Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways [J].
Chapman, Andrew J. ;
McLellan, Benjamin C. ;
Tezuka, Tetsuo .
APPLIED ENERGY, 2018, 219 :187-198
[8]   Promises and challenges of perovskite solar cells [J].
Correa-Baena, Juan-Pablo ;
Saliba, Michael ;
Buonassisi, Tonio ;
Graetzel, Michael ;
Abate, Antonio ;
Tress, Wolfgang ;
Hagfeldt, Anders .
SCIENCE, 2017, 358 (6364) :739-744
[9]   Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3% [J].
Cui, Peng ;
Wei, Dong ;
Ji, Jun ;
Huang, Hao ;
Jia, Endong ;
Dou, Shangyi ;
Wang, Tianyue ;
Wang, Wenjing ;
Li, Meicheng .
NATURE ENERGY, 2019, 4 (02) :150-159
[10]   Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules [J].
Ding, Yong ;
Ding, Bin ;
Kanda, Hiroyuki ;
Usiobo, Onovbaramwen Jennifer ;
Gallet, Thibaut ;
Yang, Zhenhai ;
Liu, Yan ;
Huang, Hao ;
Sheng, Jiang ;
Liu, Cheng ;
Yang, Yi ;
Queloz, Valentin Ianis Emmanuel ;
Zhang, Xianfu ;
Audinot, Jean-Nicolas ;
Redinger, Alex ;
Dang, Wei ;
Mosconic, Edoardo ;
Luo, Wen ;
De Angelis, Filippo ;
Wang, Mingkui ;
Doerflinger, Patrick ;
Armer, Melina ;
Schmid, Valentin ;
Wang, Rui ;
Brooks, Keith G. ;
Wu, Jihuai ;
Dyakonov, Vladimir ;
Yang, Guanjun ;
Dai, Songyuan ;
Dyson, Paul J. ;
Nazeeruddin, Mohammad Khaja .
NATURE NANOTECHNOLOGY, 2022, 17 (06) :598-+