Ternary analogues of lie and Malcev algebras

被引:13
作者
Bremner, MR
Peresi, LA
机构
[1] Univ Saskatchewan, Res Unit Algebra & Log, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
基金
加拿大自然科学与工程研究理事会;
关键词
ternary algebras; polynomial identities; computational linear algebra; representations of the symmetric group;
D O I
10.1016/j.laa.2005.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two analogues of associativity for ternary algebras: total and partial associativity. Using the corresponding ternary associators, we define ternary analogues of alternative and assosymmetric algebras. On any ternary algebra the alternating sum [a, b, c] = abc - acb - bac + bca + cab - cba (the ternary analogue of the Lie bracket) defines a structure of an anticommutative ternary algebra. We determine the polynomial identities of degree <= 7 satisfied by this operation in totally and partially associative, alternative, and assosymmetric ternary algebras. These identities define varieties of ternary algebras which can be regarded as ternary analogues of Lie and Malcev algebras. Our methods involve computational linear algebra based on the representation theory of the symmetric group. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 23 条
[1]   Invariant nonassociative algebra structures on irreducible representations of simple Lie algebras [J].
Bremner, M ;
Hentzel, I .
EXPERIMENTAL MATHEMATICS, 2004, 13 (02) :231-256
[2]   Identities for algebras of matrices over the octonions [J].
Bremner, M ;
Hentzel, I .
JOURNAL OF ALGEBRA, 2004, 277 (01) :73-95
[3]   Identities for the ternary commutator [J].
Bremner, M .
JOURNAL OF ALGEBRA, 1998, 206 (02) :615-623
[5]  
FILIPPOV VT, 1985, SIBERIAN MATH J+, V26, P879
[6]  
Gnedbaye AV, 1997, CONT MATH, V202, P83
[7]   ON LIE K-ALGEBRAS [J].
HANLON, P ;
WACHS, M .
ADVANCES IN MATHEMATICS, 1995, 113 (02) :206-236
[8]   A nonzero element of degree 7 in the center of the free alternative algebra [J].
Hentzel, IR ;
Peresi, LA .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (03) :1279-1299
[9]   Identities of Cayley-Dickson algebras [J].
Hentzel, IR ;
Peresi, LA .
JOURNAL OF ALGEBRA, 1997, 188 (01) :292-309
[10]  
HENTZEL IR, 1977, RINGS ALG SPEC SESS, P13